

V
o
lu

m
e
 O

n
e
:

DD
aa

tt aa
 RR

ee
pp

rr ee
ss
ee
nn

tt aa
tt ii

oo
nn
Volume One: Data Representation

Chapter One: Foreword

An introduction to this text and the purpose behind this
text.

Chapter Two: Hello, World of Assembly Language

A brief introduction to assembly language programming
using the HLA language.

Chapter Three: Data Representation

A discussion of numeric representation on the computer.

Chapter Four: More Data Representation

Advanced numeric and non-numeric computer data rep-
resentation.

Chapter Five: Questions, Projects, and Laboratory Exercises

Test what you’ve learned in the previous chapters!

These five chapters are appropriate for all courses teach-
ing maching organization and assembly language pro-
gramming.

Volume 1
Page 2 © 2000, By Randall Hyde Beta Draft - Do not distribute

Foreward Chapter One

Nearly every text has a throw-away chapter as Chapter One. Here’s my version. Seriously, though,
some important copyright, instructional, and support information appears in this chapter. So you’ll
probably want to read this stuff. Instructions will definitely want to review this material.

• Foreward to the HLA Version of “The Art of Assembly...”

In 1987 I began work on a text I entitled “How to Program the IBM PC, Using 8088 Assembly
Language.” First, the 8088 faded into history, shortly thereafter the phrase “IBM PC” and even
“IBM PC Compatible” became far less dominate in the industry, so I retitled the text “The Art of
Assembly Language Programming.” I used this text in my courses at Cal Poly Pomona and UC
Riverside for many years, getting good reviews on the text (not to mention lots of suggestions and
corrections). Sometime around 1994-1995, I converted the text to HTML and posted an electronic
version on the Internet. The rest, as they say is history. A week doesn’t go by that I don’t get several
emails praising me for releasing such a fine text on the Internet. Indeed, I only hear three really big
complaints about the text: (1) It’s a University textbook and some people don’t like to read text-
books, (2) It’s 16-bit DOS-based, and (3) there isn’t a print version of the text. Well, I make no
apologies for complaint #1. The whole reason I wrote the text was to support my courses at Cal
Poly and UC Riverside. Complaint #2 is quite valid, that’s why I wrote this version of the text. As
for complaint #3, it was really never cost effective to create a print version; publishers simply can-
not justify printing a text 1,500 pages long with a limited market. Furthermore, having a print ver-
sion would prevent me from updating the text at will for my courses.

The astute reader will note that I haven’t updated the electronic version of “The Art of Assem-
bly Language Programming” (or “AoA”) since about 1996. If the whole reason for keeping the
book in electronic form has been to make updating the text easy, why haven’t there been any
updates? Well, the story is very similar to Knuth’s “The Art of Computer Programming” series: I
was sidetracked by other projects1.

The static nature of AoA over the past several years was never really intended. During the
1995-1996 time frame, I decided it was time to make a major revision to AoA. The first version of
AoA was MS-DOS based and by 1995 it was clear that MS-DOS was finally becoming obsolete;
almost everyone except a few die-hards had switched over to Windows. So I knew that AoA needed
an update for Windows, if nothing else.

I also took some time to evaluate my curriculum to see if I couldn’t improve the pedagogical
(teaching) material to make it possible for my students to learn even more about 80x86 assembly
language in a relatively short 10-week quarter.

One thing I’ve learned after teaching an assembly language course for over a decade is that
support software makes all the difference in the world to students writing their first assembly lan-
guage programs. When I first began teaching assembly language, my students had to write all their
own I/O routines (including numeric to string conversions for numeric I/O). While one could argue
that there is some value to having students write this code for themselves, I quickly discovered that
they spent a large percentage of their project time over the quarter writing I/O routines. Each
moment they spent writing these relatively low-level routines was one less moment available to
them for learning more advanced assembly language programming techniques. While, I repeat,
there is some value to learning how to write this type of code, it’s not all that related to assembly
language programming (after all, the same type of problem has to be solved for any language that
allows numeric I/O). I wanted to free the students from this drudgery so they could learn more
about assembly language programming. The result of this observation was “The UCR Standard
Library for 80x86 Assembly Language Programmers.” This is a library containing several hundred
I/O and utility functions that students could use in their assembly language programs. More than

1. Actually, another problem is the effort needed to maintain the HTML version since it was a manual conversion from Adobe
Framemaker. But that’s another story...
Page 3

Chapter One Volume 1

nearly anything else, the UCR Standard Library improved the progress students made in my
courses.

It should come as no surprise, then, that one of my first projects when rewriting AoA was to
create a new, more powerful, version of the UCR Standard Library. This effort (the UCR Stdlib
v2.0) ultimately failed (although you can still download the code written for v2.0 from http://web-
ster.cs.ucr.edu). The problem was that I was trying to get MASM to do a little bit more than it was
capable of and so the project was ultimately doomed.

To condense a really long story, I decided that I needed a new assembler. One that was power-
ful enough to let me write the new Standard Library the way I felt it should be written. However,
this new assembler should also make it much easier to learn assembly language; that is, it should
relieve the students of some of the drudgery of assembly language programming just as the UCR
Standard Library had. After three years of part-time effort, the end result was the “High Level
Assembler,” or HLA.

HLA is a radical step forward in teaching assembly language. It combines the syntax of a high
level language with the low-level programming capabilities of assembly language. Together with
the HLA Standard Library, it makes learning and programming assembly language almost as easy
as learning and programming a High Level Language like Pascal or C++. Although HLA isn’t the
first attempt to create a hybrid high level/low level language, nor is it even the first attempt to create
an assembly language with high level language syntax, it’s certainly the first complete system (with
library and operating system support) that is suitable for teaching assembly language programming.
Recent experiences in my own assembly language courses show that HLA is a major improvement
over MASM and other traditional assemblers when teaching machine organization and assembly
language programming.

The introduction of HLA is bound to raise lots of questions about its suitability to the task of
teaching assembly language programming (as well it should). Today, the primary purpose of teach-
ing assembly language programming at the University level isn’t to produce a legion of assembly
language programmers; it’s to teach machine organization and introduce students to machine archi-
tecture. Few instructors realistically expect more than about 5% of their students to wind up work-
ing in assembly language as their primary programming language2. Doesn’t turning assembly
language into a high level language defeat the whole purpose of the course? Well, if HLA let you
write C/C++ or Pascal programs and attempted to call these programs “assembly language” then
the answer would be “Yes, this defeats the purpose of the course.” However, despite the name and
the high level (and very high level) features present in HLA, HLA is still assembly language. An
HLA programmer still uses 80x86 machine instructions to accomplish most of the work. And those
high level language statements that HLA provides are purely optional; the “purist” can use nothing
but 80x86 assembly language, ignoring the high level statements that HLA provides. Those who
argue that HLA is not true assembly language should note that Microsoft’s MASM and Inprise’s
TASM both provide many of the high level control structures found in HLA3.

Perhaps the largest deviation from traditional assemblers that HLA makes is in the declaration
of variables and data in a program. HLA uses a very Pascal-like syntax for variable, constant, type,
and procedure declarations. However, this does not diminish the fact that HLA is an assembly lan-
guage. After all, at the machine language (vs. assembly language) level, there is no such thing as a
data declaration. Therefore, any syntax for data declaration is an abstraction of data representation
in memory. I personally chose to use a syntax that would prove more familiar to my students than
the traditional data declarations used by assemblers.

Indeed, perhaps the principle driving force in HLA’s design has been to leverage the student’s
existing knowledge when teaching them assembly language. Keep in mind, when a student first
learns assembly language programming, there is so much more for them to learn than a handful of
80x86 machine instructions and the machine language programming paradigm. They’ve got to
learn assembler directives, how to declare variables, how to write and call procedures, how to com-
ment their code, what constitutes good programming style in an assembly language program, etc.

2. My experience suggests that only about 10-20% of my students will ever write any assembly language again once they
graduate; less than 5% ever become regular assembly language users.
3. Indeed, in some respects the MASM and TASM HLL control structures are actually higher level than HLA’s. I specifically
restricted the statements in HLA because I did not want students writing “C/C++ programs with MOV instructions.”
Page 4

Foreward

Unfortunately, with most assemblers, these concepts are completely different in assembly language
than they are in a language like Pascal or C/C++. For example, the indentation techniques students
master in order to write readable code in Pascal just don’t apply to (traditional) assembly language
programs. That’s where HLA deviates from traditional assemblers. By using a high level syntax,
HLA lets students leverage their high level language knowledge to write good readable programs.
HLA will not let them avoid learning machine instructions, but it doesn’t force them to learn a
whole new set of programming style guidelines, new ways to comment your code, new ways to cre-
ate identifiers, etc. HLA lets them use the knowledge they already possess in those areas that really
have little to do with assembly language programming so they can concentrate on learning the
important issues in assembly language.

So let there be no question about it: HLA is an assembly language. It is not a high level lan-
guage masquerading as an assembler4. However, it is a system that makes learning and using
assembly language easier than ever before possible.

Some long-time assembly language programmers, and even many instructors, would argue that
making a subject easier to learn diminishes the educational content. Students don’t get as much out
of a course if they don’t have to work very hard at it. Certainly, students who don’t apply them-
selves as well aren’t going to learn as much from a course. I would certainly agree that if HLA’s
only purpose was to make it easier to learn a fixed amount of material in a course, then HLA would
have the negative side-effect of reducing what the students learn in their course. However, the real
purpose of HLA is to make the educational process more efficient; not so the students spend less
time learning a fixed amount of material (although HLA could certainly achieve this), but to allow
the students to learn the same amount of material in less time so they can use the additional time
available to them to advance their study of assembly language. Remember what I said earlier about
the UCR Standard Library- it’s introduction into my course allowed me to teach even more
advanced topics in my course. The same is true, even more so, for HLA. Keep in mind, I’ve got ten
weeks in a quarter. If using HLA lets me teach the same material in seven weeks that took ten
weeks with MASM, I’m not going to dismiss the course after seven weeks. Instead, I’ll use this
additional time to cover more advanced topics in assembly language programming. That’s the real
benefit to using pedagogical tools like HLA.

Of course, once I’ve addressed the concerns of assembly language instructors and long-time
assembly language programmers, the need arises to address questions a student might have about
HLA. Without question, the number one concern my students have had is “If I spend all this time
learning HLA, will I be able to use this knowledge once I get out of school?” A more blunt way of
putting this is “Am I wasting my time learning HLA?” Let me address these questions three ways.

First, as pointed out above, most people (instructors and experienced programmers) view
learning assembly language as an educational process. Most students will probably never program
full-time in assembly language, indeed, few programmers write more than a tiny fraction (less than
1%) of their code in assembly language. One of the main reasons most Universities require their
students to take an assembly language course is so they will be familiar with the low-level operation
of their machine and so they can appreciate what the compiler is doing for them (and help them to
write better HLL code once they realize how the compiler processes HLL statements). HLA is an
assembly language and learning HLA will certainly teach you the concepts of machine organiza-
tion, the real purpose behind most assembly language courses.

The second point to ponder is that learning assembly language consists of two main activities;
learning the assembler’s syntax and learning the assembly language programming paradigm (that
is, learning to think in assembly language). Of these two, the second activity is, by far, the more dif-
ficult. HLA, since it uses a high level language-like syntax, simplifies learning the assembly lan-
guage syntax. HLA also simplifies the initial process of learning to program in assembly language
by providing a crutch, the HLA high level statements, that allows students to use high level lan-
guage semantics when writing their first programs. However, HLA does allow students to write
“pure” assembly language programs, so a good instructor will ensure that they master the full
assembly language programming paradigm before they complete the course. Once a student mas-
ters the semantics (i.e., the programming paradigm) of assembly language, learning a new syntax is

4. The C-- language is a good example of a low-level non-assembly language, if you need a comparison.
Page 5

Chapter One Volume 1

relatively easy. Therefore, a typical student should be able to pick up MASM in about a week after
mastering HLA5.

As for the third and final point: to those that would argue that this is still extra effort that isn’t
worthwhile, I would simply point out that none of the existing assemblers have more than a cursory
level of compatibility. Yes, TASM can assemble most MASM programs, but the reverse is not true.
And it’s certainly not the case that NASM, A86, GAS, MASM, and TASM let you write inter-
changeable code. If you master the syntax of one of these assemblers and someone expects you to
write code in a different assembler, you’re still faced with the prospect of having to learn the syntax
of the new assembler. And that’s going to take you about a week (assuming the presence of well-
written documentation). In this respect, HLA is no different than any of the other assemblers.

Having addressed these concerns you might have, it’s now time to move on and start teaching
assembly language programming using HLA.

• Intended Audience

No single textbook can be all things to all people. This text is no exception. I’ve geared this text
and the accompanying software to University level students who’ve never previously learned
assembly language programming. This is not to say that others cannot benefit from this work; it
simply means that as I’ve had to make choices about the presentation, I’ve made choices that should
prove most comfortable for this audience I’ve chosen.

A secondary audience who could benefit from this presentation is any motivated person that
really wants to learn assembly language. Although I assume a certain level of mathematical matu-
rity from the reader (i.e., high school algebra), most of the “tough math” in this textbook is inciden-
tal to learning assembly language programming and you can easily skip over it without fear that
you’ll miss too much. High school students and those who haven’t seen a school in 40 years have
effectively used this text (and its DOS counterpart) to learn assembly language programming.

The organzation of this text reflects the diverse audience for which it is intended. For example,
in a standard textbook each chapter typically has its own set of questions, programming exercises,
and laboratory exercises. Since the primary audience for this text is Univeristy students, such peda-
gogical material does appear within this text. However, recognizing that not everyone who reads
this text wants to bother with this material (e.g., downloading it), this text moves such pedagogical
material to the end of each volume in the text and places this material in a separate chapter. This is
somewhat of an unusual organization, but I feel that University instructors can easily adapt to this
organization and it saves burdening those who aren’t interested in this material.

One audience to whom this book is specifically not directed are those persons who are already
comfortable programming in 80x86 assembly language. Undoubtedly, there is a lot of material such
programmers will find of use in this textbook. However, my experience suggests that those who’ve
already learned x86 assembly language with an assembler like MASM, TASM, or NASM rebel at
the thought of having to relearn basic assembly language syntax (as they would to have to learn
HLA). If you fall into this category, I humbly apologize for not writing a text more to your liking.
However, my goal has always been to teach those who don’t already know assembly language, not
extend the education of those who do. If you happen to fall into this category and you don’t partic-
ularly like this text’s presentation, there is some good news: there are dozens of texts on assembly
language programming that use MASM and TASM out there. So you don’t really need this one.

• Teaching From This Text

The first thing any instructor will notice when reviewing this text is that it’s far too large for
any reasonable course. That’s because assembly language courses generally come in two flavors: a
machine organization course (more hardware oriented) and an assembly language programming
course (more software oriented). No text that is “just the right size” is suitable for both types of

5. This is very similar to mastering C after learning C++.
Page 6

Foreward

classes. Combining the information for both courses, plus advanced information students may need
after they finish the course, produces a large text, like this one.

If you’re an instructor with a limited schedule for teaching this subject, you’ll have to carefully
select the material you choose to present over the time span of your course. To help, I’ve included
some brief notes at the beginning of each Volume in this text that suggests whether a chapter in that
Volume is appropriate for a machine organization course, an assembly language programming
course, or an advanced assembly programming course. These brief course notes can help you
choose which chapters you want to cover in your course.

If you would like to offer hard copies of this text in the bookstore for your students, I will
attempt to arrange with some “Custom Textbook Publishing” houses to make this material available
on an “as-requested” basis. As I work out arrangements with such outfits, I’ll post ordering infor-
mation on Webster (http://webster.cs.ucr.edu). If your school has a printing and reprographics
department, or you have a local business that handles custom publishing, you can certainly request
copyright clearance to print the text locally.

If you’re not taking a formal course, just keep in mind that you don’t have to read this text
straight through, chapter by chapter. If you want to learn assembly language programming and
some of the machine organization chapters seem a little too hardware oriented for your tastes, feel
free to skip those chapters and come back to them later on, when you understand the need to learn
this information.

• Copyright Notice

The full contents of this text is copyrighted material. Here are the rights I hereby grant con-
cerning this material. You have the right to

• Read this text on-line from the http://webster.cs.ucr.edu web site or any other
approved web site.

• Download an electronic version of this text for your own personal use and view
this text on your own personal computer.

• Make a single printed copy for your own personal use.

I usually grant instructors permission to use this text in conjunction with their courses at recog-
nized academic institutions. There are two types of reproduction I allow in this instance: electronic
and printed. I grant electronic reproduction rights for one school term; after which the institution
must remove the electronic copy of the text and obtain new permission to repost the electronic form
(I require a new copy for each term so that corrections, changes, and additions propagate across the
net). If your institution has reproduction facilities, I will grant hard copy reproduction rights for one
academic year (for the same reasons as above). You may obtain copyright clearance by emailing me
at

rhyde@cs.ucr.edu

I will respond with clearance via email. My returned email plus this page should provide suffi-
cient acknowledgement of copyright clearance. If, for some reason, your reproduction department
needs to have me physically sign a copyright clearance, I will have to charge $75.00 U.S. to cover
my time and effort needed to deal with this. To obtain such clearance, please email me at the
address above. Presumably, your printing and reproduction department can handle producing a
master copy from PDF files. If not, I can print a master copy on a laser printer (800x400dpi), please
email me for the current cost of this service.

All other rights to this text are expressly reserved by the author. In particular, it is a copyright
violation to

• Post this text (or some portion thereof) on some web site without prior approval.
• Reproduce this text in printed or electronic form for non-personal (e.g., commer-

cial) use.
Page 7

Chapter One Volume 1

The software accompanying this text is all public domain material unless an explicit copyright
notice appears in the software. Feel free to use the accompanying software in any way you feel fit.

• How to Get a Hard Copy of This Text

This text is distributed in electronic form only. It is not available in hard copy form nor do I
personally intend to have it published. If you want a hard copy of this text, the copyright allows you
to print one for yourself. The PDF distribution format makes this possible (though the length of the
text will make it somewhat expensive).

If you’re wondering why I don’t get this text published, there’s a very simple reason: it’s too
long. Publishing houses generally don’t want to get involved with texts for specialized subjects as it
is; the cost of producing this text is prohibitive given its limited market. Rather than cut it down to
the 500 or so 6” x 9” pages that most publishers would accept, my decision was to stick with the
full text and release the text in electronic form on the Internet. The upside is that you can get a free
copy of this text; the downside is that you can’t readily get a hard copy.

Note that the copyright notice forbids you from copying this text for anything other than per-
sonal use (without permission, of course). If you run a “Print to Order/Custom Textbook” publish-
ing house and would like to make copies for people, feel free to contact me and maybe we can work
out a deal for those who just have to have a hard copy of this text.

• Obtaining Program Source Listings and Other Materials in This Text

All of the software appearing in this text is available from the Webster web site. The URL is

http://webster.cs.ucr.edu

The data might also be available via ftp from the following Internet address:

ftp.cs.ucr.edu

Log onto ftp.cs.ucr.edu using the anonymous account name and any password. Switch to the “/pub/
pc/ibmpcdir” subdirectory (this is UNIX so make sure you use lowercase letters). You will find the
appropriate files by searching through this directory.

The exact filename(s) of this material may change with time, and different services use differ-
ent names for these files. Check on Webster for any important changes in addresses. If for some rea-
son, Webster disappears in the future, you should use a web-based search engine like “AltaVista”
and search for “Art of Assembly” to locate the current home site of this material.

• Where to Get Help

If you’re reading this text and you’ve got questions about how to do something, please post a
message to one of the following Internet newsgroups:

comp.lang.asm.x86
alt.lang.asm

Hundreds of knowledgeable individuals frequent these newsgroups and as long as you’re not
simply asking them to do your homework assignment for you, they’ll probably be more than happy
to help you with any problems that you have with assembly language programming.

I certainly welcome corrections and bug reports concerning this text at my email address.
However, I regret that I do not have the time to answer general assembly language programming
questions via email. I do provide support in public forums (e.g., the newsgroups above and on Web-
ster at http://webster.cs.ucr.edu) so please use those avenues rather than emailing questions directly
Page 8

Foreward

to me. Due to the volume of email I receive daily, I regret that I cannot reply to all emails that I
receive; so if you’re looking for a response to a question, the newsgroup is your best bet (not to
mention, others might benefit from the answer as well).

• Other Materials You Will Need

In addition to this text and the software I provide, you will need a machine running a 32-bit
version of Windows (Windows 9x, NT, 2000, ME, etc.), a copy of Microsoft’s MASM and a 32-bit
linker, some sort of text editor, and other rudimentary general-purpose software tools you normally
use. MASM and MS-Link are freely available on the internet. Alas, the procedure you must follow
to download these files from Microsoft seems to change on a monthly basis. However, a quick post
to comp.lang.asm.x86 should turn up the current site from which you may obtain this software.
Almost all the software you need to use this text is part of Windows (e.g., a simple text editor like
Notepad.exe) or is freely available on the net (MASM, LINK, and HLA). You shouldn’t have to
purchase anything.
Page 9

Chapter One Volume 1
Page 10

Hello, World of Assembly Language

Hello, World of Assembly Language Chapter Two

2.0 Chapter Overview

This chapter is a “quick-start” chapter that lets you start writing basic assembly language programs right
away. This chapter presents the basic syntax of an HLA (High Level Assembly) program, introduces you to
the Intel CPU architecture, provides a handful of data declarations and machine instructions, describes some
utility routines you can call in the HLA Standard Library, and then shows you how to write some simple
assembly language programs. By the conclusion of this chapter, you should understand the basic syntax of
an HLA program and be prepared to start learning new language features in subsequent chapters.

Note: this chapter assumes that you have successfully installed HLA on your system. Please see
Appendix I for details concerning the installation of HLA (alternately, you can read the HLA documenta-
tion).

2.1 The Anatomy of an HLA Program

An HLA program typically takes the following form:

Figure 2.1 Basic HLA Program Layout

The pgmID in the template above is a user-defined program identifier. You must pick an appropriate,
descriptive, name for your program. In particular, pgmID would be a horrible choice for any real program. If
you are writing programs as part of a course assignment, your instructor will probably give you the name to
use for your main program. If you are writing your own HLA program, you will have to choose this name.

Identifiers in HLA are very similar to identifiers in most high level languages. HLA identifiers may
begin with an underscore or an alphabetic character, and may be followed by zero or more alphanumeric or
underscore characters. HLA’s identifiers are case neutral. This means that the identifiers are case sensitive
insofar as you must always spell an identifier exactly the same way (even with respect to upper and lower
case) in your program. However, unlike other case sensitive languages, like C/C++, you may not declare two
identifiers in the program whose name differs only by the case of alphabetic characters appearing in an iden-
tifier. Case neutrality enforces the good programming style of always spelling your names exactly the same
way (with respect to case) and never declaring two identifiers whose only difference is the case of certain
alphabetic characters.

program pgmID ;

Declarations

begin pgmID ;

Statements

end pgmID ;

These identifiers
specify the name
of the program.
They must all be
the same identifier.

The declarations section
is where you declare constants,
types, variables, procedures, and
other objects in an HLA program.

The Statements section is where
you place the executable statements
for your main program.

PROGRAM, BEGIN, and END are HLA reserved words that delineate the program. Note the
placement of the semicolons in this program.
Beta Draft - Do not distribute © 1999, By Randall Hyde Page 11

Chapter Two Volume 1

A traditional first program people write, popularized by K&R’s “The C Programming Language” is the
“Hello World” program. This program makes an excellent concrete example for someone who is learning a
new language. Here’s what the “Hello World” program looks like in HLA:

program helloWorld;
#include(“stdlib.hhf”);

begin helloWorld;

stdout.put(“Hello, World of Assembly Language”, nl);

end helloWorld;

Program 2.1 The Hello World Program

The #include statement in this program tells the HLA compiler to include a set of declarations from the
stdlib.hhf (standard library, HLA Header File). Among other things, this file contains the declaration of the
stdout.put code that this program uses.

The stdout.put statement is the typical “print” statement for the HLA language. You use it to write data
to the standard output device (generally the console). To anyone familiar with I/O statements in a high level
language, it should be obvious that this statement prints the phrase “Hello, World of Assembly Language”.
The nl appearing at the end of this statement is a constant, also defined in “stdlib.hhf”, that corresponds to
the newline sequence.

Note that semicolons follow the program, #INCLUDE, BEGIN, stdout.put, and END statements1. Tech-
nically speaking, a semicolon is not required after the #INCLUDE statement, but HLA allows it in this con-
text so many programmers stick one there for the sake of consistency.

The #INCLUDE is your first introduction to HLA declarations. The #INCLUDE itself isn’t actually a
declaration, but it does tell the HLA compiler to substitute the file “stdlib.hhf” in place of the #INCLUDE
directive, thus inserting several declarations at this point in your program. Most HLA programs you will
write will need to include at least some of the HLA Standard Library header files (“stdlib.hhf” actually
includes all the standard library definitions into your program; for more efficient compiles, you might want
to be more selective about which files you include. You will see how to do this in a later chapter).

Compiling this program produces a console application. Under Win322, running this program in a com-
mand window prints the specified string and then control returns back to the Windows command line inter-
preter.

2.2 Some Basic HLA Data Declarations

HLA provides a wide variety of constant, type, and data declaration statements. Later chapters will
cover the declaration section in more detail but it’s important to know how to declare a few simple variables
in an HLA program.

HLA predefines three different signed integer types: int8, int16, and int32, corresponding to eight-bit
(one byte) signed integers, 16-bit (two byte) signed integers, and 32-bit (four byte) signed integers respec-

1. Technically, from a language design point of view, these are not all statements. However, this chapter will not make that
distinction.
2. This text will use the phrase Win32 to denote any version of 32-bit version of Windows including Windows NT, Windows
95, Windows 98, Windows 2000, and later versions of Windows that run on processors supporting the Intel 32-bit 80x86
instruction set.
Page 12 © 1999, By Randall Hyde Beta Draft - Do not distribute

Hello, World of Assembly Language

tively3. Typical variable declarations occur in the HLA static variable section. A typical set of variable dec-
larations takes the following form

Figure 2.2 Static Variable Declarations

Those who are familiar with the Pascal language should be comfortable with this declaration syntax.
This example demonstrates how to declare three separate integers, i8, i16, and i32. Of course, in a real pro-
gram you should use variable names that are a little more description. While names like “i8” and “i32”
describe the type of the object, they do not describe it’s purpose. Variable names should describe the purpose
of the object.

In the STATIC declaration section, you can also give a variable an initial value that the operating system
will assign to the variable when it loads the program into memory. The following figure demonstrates the
syntax for this:

Figure 2.3 Static Variable Initialization

It is important to realize that the expression following the assignment operator (“:=”) must be a constant
expression. You cannot assign the values of other variables within a STATIC variable declaration.

Those familiar with other high level languages (especially Pascal) should note that you may only
declare one variable per statement. That is, HLA does not allow a comma delimited list of variable names
followed by a colon and a type identifier. Each variable declaration consists of a single identifier, a colon, a
type ID, and a semicolon.

Here is a simple HLA program that demonstrates the use of variables within an HLA program:

Program DemoVars;
#include(“stdlib.hhf”);

static
 InitDemo: int32 := 5;
 NotInitialized: int32;

begin DemoVars;

3. A discussion of bits and bytes will appear in the next chapter if you are unfamiliar with these terms.

static
i8: int8;
i16: int16;
i32: int32;

"static" is the keyword that begins
the variable declaration section.

int8, int16, and int32 are the names
of the data types for each declaration

i8, i16, and i32
are the names of
the variables to
declare here.

static
i8: int8 := 8;
i16: int16 := 1600;
i32: int32 := -320000;

The operand after the constant
assignment operator must be
a constant whose type is
compatible with the variable
you are initializing

The constant assignment
operator, ":=" tells HLA
that you wish to initialize
the specified variable with
an initial value.
Beta Draft - Do not distribute © 1999, By Randall Hyde Page 13

Chapter Two Volume 1

 // Display the value of the pre-initialized variable:

 stdout.put(“InitDemo’s value is “, InitDemo, nl);

 // Input an integer value from the user and display that value:

 stdout.put(“Enter an integer value: “);
 stdin.get(NotInitialized);
 stdout.put(“You entered: “, NotInitialized, nl);

end DemoVars;

Program 2.2 Variable Declaration and Use

In addition to STATIC variable declarations, this example introduces three new concepts. First, the std-
out.put statement allows multiple parameters. If you specify an integer value, stdout.put will convert that
value to the string representation of that integer’s value on output. The second new feature this sample pro-
gram introduces is the stdin.get statement. This statement reads a value from the standard input device (usu-
ally the keyboard), converts the value to an integer, and stores the integer value into the NotInitialized
variable. Finally, this program also introduces the syntax for (one form of) HLA comments. The HLA com-
piler ignores all text from the “//” sequence to the end of the current line. Those familiar with C++ and Del-
phi should recognize these comments.

2.3 Boolean Values

HLA and the HLA Standard Library provides limited support for boolean objects. You can declare
boolean variables, use boolean literal constants, use boolean variables in boolean expressions (e.g., in an IF
statement), and you can print the values of boolean variables.

Boolean literal constants consist of the two predefined identifiers true and false . Internally, HLA repre-
sents the value true using the numeric value one; HLA represents false using the value zero. Most programs
treat zero as false and anything else as true, so HLA’s representations for true and false should prove suffi-
cient.

To declare a boolean variable, you use the boolean data type. HLA uses a single byte (the least amount
of memory it can allocate) to represent boolean values. The following example demonstrates some typical
declarations:

static
BoolVar: boolean;
HasClass: boolean := false;
IsClear: boolean := true;

As you can see in this example, you may declare initialized as well as uninitialized variables.

Since boolean variables are byte objects, you can manipulate them using eight-bit registers and any
instructions that operate directly on eight-bit values. Furthermore, as long as you ensure that your boolean
variables only contain zero and one (for false and true, respectively), you can use the 80x86 AND, OR,
XOR, and NOT instructions to manipulate these boolean values (we’ll describe these instructions a little
later).

You can print boolean values by making a call to the stdout.put routine, e.g.,

stdout.put(BoolVar)

This routine prints the text “true” or “false” depending upon the value of the boolean parameter (zero is
false, anything else is true).
Page 14 © 1999, By Randall Hyde Beta Draft - Do not distribute

Hello, World of Assembly Language

2.4 Character Values

HLA lets you declare one-byte ASCII character objects using the char data type. You may initialize
character variables with a literal character value by surrounding the character with a pair of apostrophes.
The following example demonstrates how to declare and initialize character variables in HLA:

static
c: char;
LetterA: char := ‘A’;

You can print character variables use the stdout.put routine.

2.5 An Introduction to the Intel 80x86 CPU Family

Thus far, you’ve seen a couple of HLA programs that will actually compile and run. However, all the
statements utilized to this point have been either data declarations or calls to HLA Standard Library routines.
There hasn’t been any real assembly language up to this point. Before we can progress any farther and learn
some real assembly language, a detour is necessary. For unless you understand the basic structure of the Intel
80x86 CPU family, the machine instructions will seem mysterious indeed.

The Intel CPU family is generally classified as a Von Neumann Architecture Machine. Von Neumann
computer systems contain three main building blocks: the central processing unit (CPU), memory, and
input/output devices (I/O). These three components are connected together using the system bus. The follow-
ing block diagram shows this relationship:

Figure 2.4 Von Neumann Computer System Block Diagram

Memory and I/O devices will be the subjects of later chapters; for now, let’s take a look inside the CPU
portion of the computer system, at least at the components that are visible to the assembly language pro-
grammer.

The most prominent items within the CPU are the registers. The Intel CPU registers can be broken down
into four categories: general purpose registers, special purpose application accessible registers, segment reg-
isters, and special purpose kernel mode registers. This text will not consider the last two sets of registers. The
segment registers are not used much in modern 32-bit operating systems (e.g., Windows and Linux); since
this text is geared around programs written for Windows, there is little need to discuss the segment registers.

CPU

Memory

I/O Devices
Beta Draft - Do not distribute © 1999, By Randall Hyde Page 15

Chapter Two Volume 1

The special purpose kernel mode registers are intended for use by people who write operating systems,
debuggers, and other system level tools. Such software construction is well beyond the scope of this text, so
once again there is little need to discuss the special purpose kernel mode registers.

The 80x86 (Intel family) CPUs provide several general purpose registers for application use. These
include eight 32-bit registers that have the following names:

EAX, EBX, ECX, EDX, ESI, EDI, EBP, and ESP

The “E” prefix on each name stands for extended. This prefix differentiates the 32-bit registers from the eight
16-bit registers that have the following names:

AX, BX, CX, DX, SI, DI, BP, and SP

Finally, the 80x86 CPUs provide eight 8-bit registers that have the following names:

AL, AH, BL, BH, CL, CH, DL, and DH

Unfortunately, these are not all separate registers. That is, the 80x86 does not provide 24 independent
registers. Instead, the 80x86 overlays the 32-bit registers with the 16-bit registers and it overlays the 16-bit
registers with the 8-bit registers. The following diagram shows this relationship:

Figure 2.5 80x86 (Intel CPU) General Purpose Registers

The most important thing to note about the general purpose registers is that they are not independent.
Modifying one register will modify at least one other register and may modify as many as three other regis-
ters. For example, modification of the EAX register may very well modify the AL, AH, and AX registers as
well. This fact cannot be overemphasized here. A very common mistake in programs written by beginning
assembly language programmers is register value corruption because the programmer did not fully under-
stand the ramifications of the above diagram.

The EFLAGS register is a 32-bit register that encapsulates several single-bit boolean (true/false) values.
Most of the bits in the EFLAGs register are either reserved for kernel mode (operating system) functions, or

CX

CH CL

ECX

DX

DH DL

EDX

AX

AL

EAX ESI

EDI

EBP

ESP

SI

BX

BH BL

EBX

DI

BP

SP

AH
Page 16 © 1999, By Randall Hyde Beta Draft - Do not distribute

Hello, World of Assembly Language

are of little interest to the application programmer. Eight of these bits (or flags) are of interest to application
programmers writing assembly language programs. These are the overflow, direction, interrupt disable4,
sign, zero, auxiliary carry, parity, and carry flags. The following diagram shows their layout within the lower
16-bits of the EFLAGS register.

Figure 2.6 Layout of the FLAGS Register (Lower 16 bits of EFLAGS)

Of the eight flags that are usable by application programmers, four flags in particular are extremely
valuable: the overflow, carry, sign, and zero flags. Collectively, we will call these four flags the condition
codes5. The state of these flags (boolean variables) will let you test the results of previous computations and
allow you to make decisions in your programs. For example, after comparing two values, the state of the
condition code flags will tell you if one value is less than, equal to, or greater than a second value. The 80x86
CPUs provide special machine instructions that let you test the flags, alone or in various combinations.

The last register of interest is the EIP (instruction pointer) register. This 32-bit register contains the
memory address of the next machine instruction to execute. Although you will manipulate this register
directly in your programs, the instructions that modify its value treat this register as an implicit operand.
Therefore, you will not need to remember much about this register since the 80x86 instruction set effectively
hides it from you.

One important fact that comes as a surprise to those just learning assembly language is that almost all
calculations on the 80x86 CPU must involve a register. For example, to add two (memory) variables
together, storing the sum into a third location, you must load one of the memory operands into a register, add
the second operand to the value in the register, and then store the register away in the destination memory
location. Registers are a middleman in nearly every calculation. Therefore, registers are very important in
80x86 assembly language programs.

Another thing you should be aware of is that although the general purpose registers have the name “gen-
eral purpose” you should not infer that you can use any register for any purpose. The SP/ESP register for
example, has a very special purpose (it’s the stack pointer) that effectively prevents you from using it for any
other purpose. Likewise, the BP/EBP register has a special purpose that limits its usefulness as a general
purpose register. All the 80x86 registers have their own special purposes that limit their use in certain con-
texts. For the time being, you should simply avoid the use of the ESP and EBP registers for generic calcula-
tions and keep in mind that the remaining registers are not completely interchangeable in your programs.

4. Applications programs cannot modify the interrupt flag, but we’ll look at this flag in the next volume of this series, hence
the discussion of this flag here.
5. Technically the parity flag is also a condition code, but we will not use that flag in this text.

Overflow
Direction
nterrupt

Sign
Zero

Auxiliary Carry

Parity

Carry

Not very
interesting to
application
programmers

15 0
Beta Draft - Do not distribute © 1999, By Randall Hyde Page 17

Chapter Two Volume 1

2.6 Some Basic Machine Instructions

The 80x86 CPUs provide just over a hundred to many thousands of different machine instructions,
depending on how you define a machine instruction. Even at the low end of the count (greater than 100), it
appears as though there are far too many machine instructions to learn in a short period of time. Fortunately,
you don’t need to know all the machine instructions. In fact, most assembly language programs probably use
around 30 different machine instructions6. Indeed, you can certainly write several meaningful programs with
only a small handful of machine instructions. The purpose of this section is to provide a small handful of
machine instructions so you can start writing simple HLA assembly language programs right away.

Without question, the MOV instruction is the most often-used assembly language statement. In a typical
program, anywhere from 25-40% of the instructions are typically MOV instructions. As its name suggests,
this instruction moves data from one location to another7. The HLA syntax for this instruction is

mov(source_operand, destination_operand);

The source_operand can be a register, a memory variable, or a constant. The destination_operand may
be a register or a memory variable. Technically the 80x86 instruction set does not allow both operands to be
memory variables; HLA, however, will automatically translate a MOV instruction with two 16- or 32-bit
memory operands into a pair of instructions that will copy the data from one location to another. In a HLL
like Pascal or C/C++, the MOV instruction is roughly equivalent to the following assignment statement:

destination_operand = source_operand ;

Perhaps the major restriction on the MOV instruction’s operands is that they must both be the same size.
That is, you can move data between two eight-bit objects, between two 16-bit objects, or between two 32-bit
objects; you may not, however, mix the sizes of the operands. The following table lists all the legal combina-
tions:

6. Different programs may use a different set of 30 instructions, but few programs use more than 30 distinct instructions.
7. Technically, MOV actually copies data from one location to another. It does not destroy the original data in the source
operand. Perhaps a better name for this instruction should have been COPY. Alas, it’s too late to change it now.

Table 1: Legal 80x86 MOV Instruction Operands

Source Destination

Reg8
a Reg8

Reg8 Mem8

Mem8 Reg8

constantb Reg8

constant Mem8

Reg16 Reg16

Reg16 Mem16

Mem16 Reg16

constant Reg16

constant Mem16
Page 18 © 1999, By Randall Hyde Beta Draft - Do not distribute

Hello, World of Assembly Language

You should study this table carefully. Most of the general purpose 80x86 instructions use this same syn-
tax. Note that in addition to the forms above, the HLA MOV instruction lets you specify two memory oper-
ands as the source and destination. However, this special translation that HLA provides only applies to the
MOV instruction; it does not generalize to the other instructions.

The 80x86 ADD and SUB instructions let you add and subtract two operands. Their syntax is nearly
identical to the MOV instruction:

add(source_operand, destination_operand);

sub(source_operand, destination_operand);

The ADD and SUB operands must take the same form as the MOV instruction, listed in the table above8.
The ADD instruction does the following:

destination_operand = destination_operand + source_operand ;

destination_operand += source_operand; // For those who prefer C syntax

Similarly, the SUB instruction does the calculation:

destination_operand = destination_operand - source_operand ;

destination_operand -= source_operand ; // For C fans.

With nothing more than these three instructions, plus the HLA control structures that the next section dis-
cusses, you can actually write some sophisticated programs. Here’s a sample HLA program that demon-
strates these three instructions:

program demoMOVaddSUB;

#include("stdlib.hhf");

static
 i8: int8 := -8;
 i16: int16 := -16;
 i32: int32 := -32;

begin demoMOVaddSUB;

 // First, print the initial values
 // of our variables.

Reg32 Reg32

Reg32 Mem32

Mem32 Reg32

constant Reg32

constant Mem32

a. The suffix denotes the size of the register or memory location.
b. The constant must be small enough to fit in the specified destination
operand

8. Remember, though, that ADD and SUB do not support memory-to-memory operations.

Table 1: Legal 80x86 MOV Instruction Operands
Beta Draft - Do not distribute © 1999, By Randall Hyde Page 19

Chapter Two Volume 1
 stdout.put
 (
 nl,
 "Initialized values: i8=", i8,
 ", i16=", i16,
 ", i32=", i32,
 nl
);

 // Compute the absolute value of the
 // three different variables and
 // print the result.
 // Note, since all the numbers are
 // negative, we have to negate them.
 // Using only the MOV, ADD, and SUB
 // instruction, we can negate a value
 // by subtracting it from zero.

 mov(0, al); // Compute i8 := -i8;
 sub(i8, al);
 mov(al, i8);

 mov(0, ax); // Compute i16 := -i16;
 sub(i16, ax);
 mov(ax, i16);

 mov(0, eax); // Compute i32 := -i32;
 sub(i32, eax);
 mov(eax, i32);

 // Display the absolute values:

 stdout.put
 (
 nl,
 "After negation: i8=", i8,
 ", i16=", i16,
 ", i32=", i32,
 nl
);

 // Demonstrate ADD and constant-to-memory
 // operations:

 add(32323200, i32);
 stdout.put(nl, "After ADD: i32=", i32, nl);

end demoMOVaddSUB;

Program 2.3 Demonstration of MOV, ADD, and SUB Instructions
Page 20 © 1999, By Randall Hyde Beta Draft - Do not distribute

Hello, World of Assembly Language
2.7 Some Basic HLA Control Structures

The MOV, ADD, and SUB instructions, while valuable, aren’t sufficient to let you write meaningful pro-
grams. You will need to complement these instructions with the ability to make decisions and create loops in
your HLA programs before you can write anything other than a trivial program. HLA provides several high
level control structures that are very similar to control structures found in high level languages. These
include IF..THEN..ELSEIF..ELSE..ENDIF, WHILE..ENDWHILE, REPEAT..UNTIL, and so on. By learn-
ing these statements you will be armed and ready to write some real programs.

Before discussing these high level control structures, it’s important to point out that these are not real
80x86 assembly language statements. HLA compiles these statements into a sequence of one or more real
assembly language statements for you. Later in this text, you’ll learn how HLA compiles the statements and
you’ll learn how to write pure assembly language code that doesn’t use them. However, you’ll need to learn
many new concepts before you get to that point, so we’ll stick with these high level language statements for
now since you’re probably already familiar with statements like these from your exposure to high level lan-
guages.

Another important fact to mention is that HLA’s high level control structures are not as high level as
they first appear. The purpose behind HLA’s high level control structures is to let you start writing assembly
language programs as quickly as possible, not to let you avoid the use of real assembly language altogether.
You will soon discover that these statements have some severe restrictions associated with them and you will
quickly outgrow their capabilities (at least the restricted forms appearing in this section). This is intentional.
Once you reach a certain level of comfort with HLA’s high level control structures and decide you need more
power than they have to offer, it’s time to move on and learn the real 80x86 instructions behind these state-
ments.

2.7.1 Boolean Expressions in HLA Statements

Several HLA statements require a boolean (true or false) expression to control their execution. Exam-
ples include the IF, WHILE, and REPEAT..UNTIL statements. The syntax for these boolean expressions
represents the greatest limitation to the HLA high level control structures. This is one area where your famil-
iarity with a high level language will work against you – you’ll want to use the same boolean expressions
you use in a high level language and HLA only supports some basic forms.

HLA boolean expressions always take the following forms9:

flag_specification

!flag_specification

register

!register

Boolean_variable

!Boolean_variable

mem_reg relop mem_reg_const

register in LowConst..HiConst

register not in LowConst..HiConst

A flag specification is one of the following symbols:

• @c carry: True if the carry is set (1), false if the carry is clear (0).
• @nc no carry: True if the carry is clear (0), false if the carry is set (1).
• @z zero: True if the zero flag is set, false if it is clear.

9. Technically, there are a few more, advanced, forms, but you’ll have to wait a few chapters before seeing these additional
formats.
Beta Draft - Do not distribute © 1999, By Randall Hyde Page 21

Chapter Two Volume 1
• @nz not zero: True if the zero flag is clear, false if it is set.
• @o overflow: True if the overflow flag is set, false if it is clear.
• @no no overflow: True if the overflow flag is clear, false if it is set.
• @s sign: True if the sign flag is set, false if it is clear.
• @ns no sign: True if the sign flag is clear, false if it is set.

The use of the flag values in a boolean expression is somewhat advanced. You will begin to see how to use
these boolean expression operands in the next chapter.

A register operand can be any of the 8-bit, 16-bit, or 32-bit general purpose registers. The expression
evaluates false if the register contains a zero; it evaluates true if the register contains a non-zero value.

If you specify a boolean variable as the expression, the program tests it for zero (false) or non-zero
(true). Since HLA uses the values zero and one to represent false and true, respectively, the test works in an
intuitive fashion. Note that HLA requires that stand-alone variables be of type boolean. HLA rejects other
data types. If you want to test some other type against zero/not zero, then use the general boolean expression
discussed next.

The most general form of an HLA boolean expression has two operands and a relational operator. The
following table lists the legal combinations:

Note that both operands cannot be memory operands. In fact, if you think of the Right Operand as the
source operand and the Left Operand as the destination operand, then the two operands must be the same as
those allowed for the ADD and SUB instructions.

Also like the ADD and SUB instructions, the two operands must be the same size. That is, they must
both be eight-bit operands, they must both be 16-bit operands, or they must both be 32-bit operands. If the
Right Operand is a constant, it’s value must be in the range that is compatible with the Left Operand.

There is one other issue of which you need to be aware. If the Left Operand is a register and the Right
Operand is a positive constant or another register, HLA uses an unsigned comparison. The next chapter will
discuss the ramifications of this; for the time being, do not compare negative values in a register against a
constant or another register. You may not get an intuitive result.

The IN and NOT IN operators let you test a register to see if it is within a specified range. For example,
the expression “EAX in 2000..2099” evaluates true if the value in the EAX register is between 2000 and
2099 (inclusive). The NOT IN (two words) operator lets you check to see if the value in a register is outside
the specified range. For example, “AL not in ‘a’..’z’” evaluates true if the character in the AL register is not
a lower case alphabetic character.

Here are some examples of legal boolean expressions in HLA:

Table 2: Legal Boolean Expressions

Left
Operand

Relational
Operator

Right Operand

Memory Variable

or

Register

= or ==
Memory Variable,

Register,

or

Constant

<> or !=

<

<=

>

>=
Page 22 © 1999, By Randall Hyde Beta Draft - Do not distribute

Hello, World of Assembly Language
@c

Bool_var

al

ESI

EAX < EBX

EBX > 5

i32 < -2

i8 > 128

al < i8

eax in 1..100

ch not in ‘a’..’z’

2.7.2 The HLA IF..THEN..ELSEIF..ELSE..ENDIF Statement

The HLA IF statement uses the following syntax:

Figure 2.7 HLA IF Statement Syntax

The expressions appearing in this statement must take one of the forms from the previous section. If the
associated expression is true, the code after the THEN executes, otherwise control transfers to the next
ELSEIF or ELSE clause in the statement.

Since the ELSEIF and ELSE clauses are optional, an IF statement could take the form of a single
IF..THEN clause, followed by a sequence of statements, and a closing ENDIF clause. The following is an
example of just such a statement:

if(expression) then

sequence
of one or
more statements

elseif(expression) then

sequence
of one or
more statements

else

sequence
of one or
more statements

endif;

The elseif clause is optional. Zero or more elseif
clauses may appear in an if statement. If more
than one elseif clause appears, all the elseif
clauses must appear before the else clause
(or before the endif if there is no else clause).

The else clause is optional. At most one
else clause may appear within an if statement
and it must be the last clause before the
endif.
Beta Draft - Do not distribute © 1999, By Randall Hyde Page 23

Chapter Two Volume 1
if(eax = 0) then

stdout.put(“error: NULL value”, nl);

endif;

If, during program execution, the expression evaluates true, then the code between the THEN and the
ENDIF executes. If the expression evaluates false, then the program skips over the code between the THEN
and the ENDIF.

Another common form of the IF statement has a single ELSE clause. The following is an example of an
IF statement with an optional ELSE:

if(eax = 0) then

stdout.put(“error: NULL pointer encountered”, nl);

else

stdout.put(“Pointer is valid”, nl);

endif;

If the expression evaluates true, the code between the THEN and the ELSE executes; otherwise the code
between the ELSE and the ENDIF clauses executes.

You can create sophisticated decision-making logic by incorporating the ELSEIF clause into an IF state-
ment. For example, if the CH register contains a character value, you can select from a menu of items using
code like the following:

if(ch = ‘a’) then

stdout.put(“You selected the ‘a’ menu item”, nl);

elseif(ch = ‘b’) then

stdout.put(“You selected the ‘b’ menu item”, nl);

elseif(ch = ‘c’) then

stdout.put(“You selected the ‘c’ menu item”, nl);

else

stdout.put(“Error: illegal menu item selection”, nl);

endif;

Although this simple example doesn’t demonstrate it, HLA does not require an ELSE clause at the end
of a sequence of ELSEIF clauses. However, when making multi-way decisions, it’s always a good idea to
provide an ELSE clause just in case an error arises. Even if you think it’s impossible for the ELSE clause to
execute, just keep in mind that future modifications to the code could possibly void this assertion, so it’s a
good idea to have error reporting statements built into your code.

2.7.3 The WHILE..ENDWHILE Statement

The WHILE statement uses the following basic syntax:
Page 24 © 1999, By Randall Hyde Beta Draft - Do not distribute

Hello, World of Assembly Language
Figure 2.8 HLA While Statement Syntax

This statement evaluates the boolean expression. If it is false, control immediately transfers to the first
statement following the ENDWHILE clause. If the value of the expression is true, then control falls through
to the body of the loop. After the loop body executes, control transfers back to the top of the loop where the
WHILE statement retests the loop control expression. This process repeats until the expression evaluates
false.

Note that the WHILE loop, like its HLL siblings, tests for loop termination at the top of the loop. There-
fore, it is quite possible that the statements in the body of the loop will not execute (if the expression is false
when the code first executes the WHILE statement). Also note that the body of the WHILE loop must, at
some point, modify the value of the boolean expression or an infinite loop will result.

mov(0, i);
while(i < 10) do

stdout.put(“i=”, i, nl);
add(1, i);

endwhile;

2.7.4 The FOR..ENDFOR Statement

The HLA FOR loop takes the following general form:

for(Initial_Stmt; Termination_Expression; Post_Body_Statement) do

<< Loop Body >>

endfor;

This is equivalent to the following WHILE statement:

Initial_Stmt;
while(Termination_expression) do

<< loop_body >>

Post_Body_Statement;

endwhile;

Initial_Stmt can be any single HLA/80x86 instruction. Generally this statement initializes a register or
memory location (the loop counter) with zero or some other initial value. Termination_expression is an

while(expression) do

sequence
of one or
more statements

endwhile;

The expression in the WHILE
statement has the same
restrictions as the IF statement.

Loop Body
Beta Draft - Do not distribute © 1999, By Randall Hyde Page 25

Chapter Two Volume 1
HLA boolean expression (same format as WHILE allows). This expression determines whether the loop
body will execute. The Post_Body_Statement executes at the bottom of the loop (as shown in the WHILE
example above). This is a single HLA statement. Usually it is an instruction like ADD that modifies the
value of the loop control variable.

The following gives a complete example:

for(mov(0, i); i < 10; add(1, i)) do

stdout.put(“i=”, i, nl);

endfor;

// The above, rewritten as a while loop, becomes:

mov(0, i);
while(i < 10) do

stdout.put(“i=”, i, nl);

add(1, i);

endwhile;

2.7.5 The REPEAT..UNTIL Statement

The HLA repeat..until statement uses the following syntax:

Figure 2.9 HLA Repeat..Until Statement Syntax

The HLA REPEAT..UNTIL statement tests for loop termination at the bottom of the loop. Therefore,
the statements in the loop body always execute at least once. Upon encountering the UNTIL clause, the pro-
gram will evaluate the expression and repeat the loop if the expression is false (that is, it repeats while false).
If the expression evaluates true, the control transfers to the first statement following the UNTIL clause.

The following simple example demonstrates one use for the REPEAT..UNTIL statement:

mov(10, ecx);
repeat

stdout.put(“ecx = “, ecx, nl);
sub(1, ecx);

until(ecx = 0);

repeat

sequence
of one or
more statements

until(expression);

The expression in the UNTIL
clause has the same
restrictions as the IF statement.

Loop Body
Page 26 © 1999, By Randall Hyde Beta Draft - Do not distribute

Hello, World of Assembly Language
If the loop body will always execute at least once, then it is more efficient to use a REPEAT..UNTIL
loop rather than a WHILE loop.

2.7.6 The BREAK and BREAKIF Statements

The BREAK and BREAKIF statements provide the ability to prematurely exit from a loop. They use the
following syntax:

Figure 2.10 HLA Break and Breakif Syntax

The BREAK statement exits the loop that immediately contains the break; The BREAKIF statement
evaluates the boolean expression and terminates the containing loop if the expression evaluates true.

2.7.7 The FOREVER..ENDFOR Statement

The FOREVER statement uses the following syntax:

Figure 2.11 HLA Forever Loop Syntax

This statement creates an infinite loop. You may also use the BREAK and BREAKIF statements along
with FOREVER..ENDFOR to create a loop that tests for loop termination in the middle of the loop. Indeed,
this is probably the most common use of this loop as the following example demonstrates:

forever

stdout.put(“Enter an integer less than 10: “);
stdin.get(i);
breakif(i < 10);
stdout.put(“The value needs to be less than 10!”, nl);

endfor;

break;

The expression in the BREAKIF
statement has the same
restrictions as the IF statement.

breakif(expression);

forever

sequence
of one or
more statements

endfor;

Loop Body
Beta Draft - Do not distribute © 1999, By Randall Hyde Page 27

Chapter Two Volume 1
2.7.8 The TRY..EXCEPTION..ENDTRY Statement

The HLA TRY..EXCEPTION..ENDTRY statement provides very powerful exception handling capabil-
ities. The syntax for this statement is the following:

Figure 2.12 HLA Try..Except..Endtry Statement Syntax

The TRY..ENDTRY statement protects a block of statements during execution. If these statements,
between the TRY clause and the first EXCEPTION clause, execute without incident, control transfers to the
first statement after the ENDTRY immediately after executing the last statement in the protected block. If an
error (exception) occurs, then the program interrupts control at the point of the exception (that is, the pro-
gram raises an exception). Each exception has an unsigned integer constant associated with it, known as the
exception ID. The “excepts.hhf” header file in the HLA Standard Library predefines several exception IDs,
although you may create new ones for your own purposes. When an exception occurs, the system compares
the exception ID against the values appearing in each of the one or more EXCEPTION clauses following the
protected code. If the current exception ID matches one of the EXCEPTION values, control continues with
the block of statements immediately following that EXCEPTION. After the exception handling code com-
pletes execution, control transfers to the first statement following the ENDTRY.

If an exception occurs and there is no active TRY..ENDTRY statement, or the active TRY..ENDTRY
statements do not handle the specific exception, the program will abort with an error message.

The following sample program demonstrates how to use the TRY..ENDTRY statement to protect the
program from bad user input:

try

sequence
of one or
more statements

exception(exceptionID)

sequence
of one or
more statements

exception(exceptionID)

sequence
of one or
more statements

endtry;

Statements to test

At least one
exception handling
block.

Zero or more (optional)
exception handling
blocks.
Page 28 © 1999, By Randall Hyde Beta Draft - Do not distribute

Hello, World of Assembly Language
repeat

mov(false, GoodInteger); // Note: GoodInteger must be a boolean var.
try

stdout.put(“Enter an integer: “);
stdin.get(i);
mov(true, GoodInteger);

exception(ex.ConversionError);

stdout.put(“Illegal numeric value, please re-enter”, nl);

exception(ex.ValueOutOfRange);

stdout.put(“Value is out of range, please re-enter”, nl);

endtry;

until(GoodInteger);

The REPEAT..UNTIL loop repeats this code as long as there is an error during input. Should an excep-
tion occur, control transfers to the EXCEPTION clauses to see if a conversion error (e.g., illegal characters
in the number) or a numeric overflow occurs. If either of these exceptions occur, then they print the appropri-
ate message and control falls out of the TRY..ENDTRY statement and the REPEAT..UNTIL loop repeats
since GoodInteger was never set to true. If a different exception occurs (one that is not handled in this code),
then the program aborts with the specified error message.

Please see the “excepts.hhf” header file that accompanies the HLA release for a complete list of all the
exception ID codes. The HLA documentation will describe the purpose of each of these exception codes.

2.8 Introduction to the HLA Standard Library

There are two reasons HLA is much easier to learn and use than standard assembly language. The first
reason is HLA’s high level syntax for declarations and control structures. This HLA feature leverages your
high level language knowledge, reducing the need to learn arcane syntax, thus allowing you to learn assem-
bly language more efficiently. The other half of the equation is the HLA Standard Library. The HLA Stan-
dard Library provides lot of commonly needed, easy to use, assembly language routines that you can call
without having to write this code yourself (or even learn how to write yourself). This eliminates one of the
larger stumbling blocks many people have when learning assembly language: the need for sophisticated I/O
and support code in order to write basic statements. Prior to the advent of a standardized assembly language
library, it often took weeks of study before a new assembly language programmer could do as much as print
a string to the display. With the HLA Standard Library, this roadblock is removed and you can concentrate
on learning assembly language concepts rather than learning low-level I/O details that are specific to a given
operating system.

A wide variety of library routines is only part of HLA’s support. After all, assembly language libraries
have been around for quite some time10. HLA’s Standard Library continues the HLA tradition by providing
a high level language interface to these routines. Indeed, the HLA language itself was originally designed
specifically to allow the creation of a high-level accessible set of library routines11. This high level interface,
combined with the high level nature of many of the routines in the library, packs a surprising amount of
power in an easy to use package.

The HLA Standard Library consists of several modules organized by category. The following table lists
many of the modules that are available12:

10. E.g., the UCR Standard Library for 80x86 Assembly Language Programmers.
11. HLA was created because MASM was insufficient to support the creation of the UCR StdLib v2.0.
Beta Draft - Do not distribute © 1999, By Randall Hyde Page 29

Chapter Two Volume 1
Later sections of this text will explain many of these modules in greater detail. This section will concen-
trate on the most important routines (at least to beginning HLA programmers), the stdio library.

2.8.1 Predefined Constants in the STDIO Module

Perhaps the first place to start is with a description of some common constants that the STDIO module
defines for you. One constant you’ve seen already in code examples appearing in this chapter. Consider the
following (typical) example:

stdout.put(“Hello World”, nl);

12. Since the HLA Standard Library is expanding, this list is probably out of date. Please see the HLA documentation for a
current list of Standard Library modules.

Table 3: HLA Standard Library Modules

Name Description

args Command line parameter parsing support routines.

conv Various conversions between strings and other values.

cset Character set functions.

DateTime Calendar, date, and time functions.

excepts Exception handling routines.

fileio File input and output routines

hla Special HLA constants and other values.

math Transcendental and other mathematical functions.

memory Memory allocation, deallocation, and support code.

misctypes Miscellaneous data types.

patterns The HLA pattern matching library.

rand Pseudo-random number generators and support code.

stdin User input routines

stdout Provides user output and several other support routines.

stdlib A special include file that links in all HLA standard library modules.

strings HLA’s powerful string library.

tables Table (associative array) support routines.

win32 Constants used in Windows calls.

x86 Constants and other items specific to the 80x86 CPU.
Page 30 © 1999, By Randall Hyde Beta Draft - Do not distribute

Hello, World of Assembly Language
The nl appearing at the end of this statement stands for newline. The nl identifier is not a special HLA
reserved word, nor is it specific to the stdout.put statement. Instead, it’s simply a predefined constant that
corresponds to the string containing two characters, a carriage return followed by a line feed (the standard
Windows end of line sequence).

In addition to the nl constant, the HLA standard I/O library module defines several other useful charac-
ter constants. They are

• stdio.bell The ASCII bell character. Beeps the speaker when printed.
• stdio.bs The ASCII backspace character.
• stdio.tab The ASCII tab character.
• stdio.eoln A linefeed character.
• stdio.lf The ASCII linefeed character.
• stdio.cr The ASCII carriage return character.

Except for nl, these characters appear in the stdio namespace (and, therefore, require the “stdio.” prefix).
The placement of these ASCII constants within the stdio namespace is to help avoid naming conflicts with
your own variables. The nl name does not appear within a namespace because you will use it very often and
typing stdio.nl would get tiresome very quickly.

2.8.2 Standard In and Standard Out

Many of the HLA I/O routines have a stdin or stdout prefix. Technically, this means that the standard
library defines these names in a namespace13. In practice, this prefix suggests where the input is coming
from (the Windows standard input device) or going to (the Windows standard output device). By default, the
standard input device is the system keyboard. Likewise, the default standard output device is the command
window display. So, in general, statements that have stdin or stdout prefixes will read and write data on the
console device.

When you run a program from the command line window, you have the option of redirecting the stan-
dard input and/or standard output devices. A command line parameter of the form “>outfile” redirects the
standard output device to the specified file (outfile). A command line parameter of the form “<infile” redi-
rects the standard input so that its data comes from the specified input file (infile). The following examples
demonstrate how to use these parameters when running a program named “testpgm” in the command win-
dow:

testpgm <input.data
testpgm >output.txt

testpgm <in.txt >output.txt

2.8.3 The stdout.newln Routine

The stdout.newln procedure prints a newline sequence to the standard output device. This is functionally
equivalent to saying “stdout.put(nl);” Of course, the call to stdout.newln is sometimes a little more conve-
nient. Example of call:

stdout.newln();

2.8.4 The stdout.putiX Routines

The stdout.puti8, stdout.puti16, and stdout.puti32 library routines print a single parameter (one byte,
two bytes, or four bytes, respectively) as a signed integer value. The parameter may be a constant, a register,

13. Namespaces will be the subject of a later chapter.
Beta Draft - Do not distribute © 1999, By Randall Hyde Page 31

Chapter Two Volume 1
or a memory variable, as long as the size of the actual parameter is the same as the size of the formal param-
eter.

These routines print the value of their specified parameter to the standard output device. These routines
will print the value using the minimum number of print positions possible. If the number is negative, these
routines will print a leading minus sign. Here are some examples of calls to these routines:

stdout.puti8(123);
stdout.puti16(DX);

stdout.puti32(i32Var);

2.8.5 The stdout.putiXsize Routines

The stdout.puti8size, stdout.puti16size, and stdout.puti32size routines output signed integer values to
the standard output, just like the stdout.putiX routines. These routines, however, provide more control over
the output; they let you specify the (minimum) number of print positions the value will require on output.
These routines also let you specify a padding character should the print field be larger than the minimum
needed to display the value. These routines require the following parameters:

stdout.puti8size(Value8, width, padchar);
stdout.puti16size(Value16,width, padchar);
stdout.puti32size(Value32, width, padchar);

The ValueX parameter can be a constant, a register, or a memory location of the specified size. The width
parameter can be any signed integer constant that is between -256 and +256; this parameter may be a con-
stant, register (32-bit), or memory location (32-bit). The padchar parameter should be a single character
value (in HLA, a character constant is a single character surrounding by apostrophes).

Like the stdout.putiX routines, these routines print the specified value as a signed integer constant to the
standard output device. These routines, however, let you specified the field width for the value. The field
width is the minimum number of print positions these routines will use when printing the value. The width
parameter specifies the minimum field width. If the number would require more print positions (e.g., if you
attempt to print “1234” with a field width of two), then these routines will print however many characters are
necessary to properly display the value. On the other hand, if the width parameter is greater than the number
of character positions required to display the value, then these routines will print some extra padding charac-
ters to ensure that the output has at least width character positions. If the width value is negative, the number
is left justified in the print field; if the width value is positive, the number is right justified in the print field.

If the absolute value of the width parameter is greater than the minimum number of print positions, then
these stdout.putiXsize routines will print a padding character before or after the number. The padchar param-
eter specifies which character these routines will print. Most of the time you would specify a space as the
pad character; for special cases, you might specify some other character. Remember, the padchar parameter
is a character value; in HLA character constants are surrounded by apostrophes, not quotation marks. You
may also specify an eight-bit register as this parameter.

Here is a short HLA program that demonstrates the use of the puti32size routine to display a list of val-
ues in tabular form:

program numsInColumns;

#include(“stdlib.hhf”);

var
 i32: int32;
 ColCnt: int8;

begin numsInColumns;
Page 32 © 1999, By Randall Hyde Beta Draft - Do not distribute

Hello, World of Assembly Language
 mov(96, i32);
 mov(0, ColCnt);
 while(i32 > 0) do

 if(ColCnt = 8) then

 stdout.newln();
 mov(0, ColCnt);

 endif;
 stdout.puti32size(i32, 5, ‘ ‘);
 sub(1, i32);
 add(1, ColCnt);

 endwhile;
 stdout.newln();

end numsInColumns;

Program 2.4 Columnar Output Demonstration Using stdio.Puti32size

2.8.6 The stdout.put Routine

The stdout.put routine14 is the one of the most flexible output routines in the standard output library
module. It combines most of the other output routines into a single, easy to use, procedure.

The generic form for the stdout.put routine is the following:

stdout.put(list_of_values_to_output);

The stdout.put parameter list consists of one or more constants, registers, or memory variables, each
separated by a comma. This routine displays the value associated with each parameter appearing in the list.
Since we’ve already been using this routine throughout this chapter, you’ve already seen lots of examples of
this routine’s basic form. It is worth pointing out that this routine has several additional features not apparent
in the examples appearing in this chapter. In particular, each parameter can take one of the following two
forms:

value

value:width

The value may be any legal constant, register, or memory variable object. In this chapter, you’ve seen
string constants and memory variables appearing in the stdout.put parameter list. These parameters corre-
spond to the first form above. The second parameter form above lets you specify a minimum field width,
similar to the stdout.putiXsize routines15. The following sample program produces the same output as the
previous program; however, it uses stdout.put rather than stdout.puti32size:

program numsInColumns2;

#include(“stdlib.hhf”);

14. Stdout.put is actually a macro, not a procedure. The distinction between the two is beyond the scope of this chapter. How-
ever, this text will describe their differences a little later.
15. Note that you cannot specify a padding character when using the stdout.put routine; the padding character defaults to the
space character. If you need to use a different padding character, call the stdout.putiXsize routines.
Beta Draft - Do not distribute © 1999, By Randall Hyde Page 33

Chapter Two Volume 1
var
 i32: int32;
 ColCnt: int8;

begin numsInColumns2;

 mov(96, i32);
 mov(0, ColCnt);
 while(i32 > 0) do

 if(ColCnt = 8) then

 stdout.newln();
 mov(0, ColCnt);

 endif;
 stdout.put(i32:5);
 sub(1, i32);
 add(1, ColCnt);

 endwhile;
 stdout.put(nl);

end numsInColumns2;

Program 2.5 Demonstration of stdout.put Field Width Specification

The stdout.put routine is capable of much more than the few attributes this section describes. This text
will introduce those additional capabilities as appropriate.

2.8.7 The stdin.getc Routine.

The stdin.getc routine reads the next available character from the standard input device’s input buffer16.
It returns this character in the CPU’s AL register. The following example program demonstrates a simple use
of this routine:

program charInput;

#include(“stdlib.hhf”);

var
 counter: int32;

begin charInput;

 // The following repeats as long as the user
 // confirms the repetition.

 repeat

 // Print out 14 values.

 mov(14, counter);

16. “Buffer” is just a fancy term for an array.
Page 34 © 1999, By Randall Hyde Beta Draft - Do not distribute

Hello, World of Assembly Language
 while(counter > 0) do

 stdout.put(counter:3);
 sub(1, counter);

 endwhile;

 // Wait until the user enters ‘y’ or ‘n’.

 stdout.put(nl, nl, “Do you wish to see it again? (Y/N):”);
 forever

 stdin.ReadLn();
 stdin.getc();
 breakif(al = ‘n’);
 breakif(al = ‘y’);
 stdout.put(“Error, please enter only ‘y’ or ‘n’: “);

 endfor;
 stdout.newln();

 until(al = ‘n’);

end charInput;

Program 2.6 Demonstration of the stdin.getc() Routine

This program uses the stdin.ReadLn routine to force a new line of input from the user. A description of
stdin.ReadLn appears just a little later in this chapter.

2.8.8 The stdin.getiX Routines

The stdin.geti8, stdin.geti16, and stdin.geti32 routines read eight, 16, and 32-bit signed integer values
from the standard input device. These routines return their values in the AL, AX, or EAX register, respec-
tively. They provide the standard mechanism for reading signed integer values from the user in HLA.

Like the stdin.getc routine, these routines read a sequence of characters from the standard input buffer.
They begin by skipping over any white space characters (spaces, tabs, etc.) and then convert the following
stream of decimal digits (with an optional, leading, minus sign) into the corresponding integer. These rou-
tines raise an exception (that you can trap with the TRY..ENDTRY statement) if the input sequence is not a
valid integer string or if the user input is too large to fit in the specified integer size. Note that values read by
stdin.geti8 must be in the range -128..+127; values read by stdin.geti16 must be in the range
-32,768..+32,767; and values read by stdin.geti32 must be in the range -2,147,483,648..+2,147,483,647.

The following sample program demonstrates the use of these routines:

program intInput;

#include("stdlib.hhf");

var
 i8: int8;
 i16: int16;
 i32: int32;
Beta Draft - Do not distribute © 1999, By Randall Hyde Page 35

Chapter Two Volume 1
begin intInput;

 // Read integers of varying sizes from the user:

 stdout.put("Enter a small integer between -128 and +127: ");
 stdin.geti8();
 mov(al, i8);

 stdout.put("Enter a small integer between -32768 and +32767: ");
 stdin.geti16();
 mov(ax, i16);

 stdout.put("Enter an integer between +/- 2 billion: ");
 stdin.geti32();
 mov(eax, i32);

 // Display the input values.

 stdout.put
 (
 nl,
 "Here are the numbers you entered:", nl, nl,
 "Eight-bit integer: ", i8:12, nl,
 "16-bit integer: ", i16:12, nl,
 "32-bit integer: ", i32:12, nl
);

end intInput;

Program 2.7 stdin.getiX Example Code

You should compile and run this program and test what happens when you enter a value that is out of
range or enter an illegal string of characters.

2.8.9 The stdin.ReadLn and stdin.FlushInput Routines

Whenever you call an input routine like stdin.getc or stdin.geti32, the program does not necessarily read
the value from the user at that particular call. Instead, the HLA Standard Library buffers the input by reading
a whole line of text from the user. Calls to input routines will fetch data from this input buffer until the
buffer is empty. While this buffering scheme is efficient and convenient, sometimes it can be confusing. Con-
sider the following code sequence:

stdout.put("Enter a small integer between -128 and +127: ");
stdin.geti8();
mov(al, i8);

stdout.put("Enter a small integer between -32768 and +32767: ");
stdin.geti16();
mov(ax, i16);

Intuitively, you would expect the program to print the first prompt message, wait for user input, print the
second prompt message, and wait for the second user input. However, this isn’t exactly what happens. For
example if you run this code (from the sample program in the previous section) and enter the text “123 456”
in response to the first prompt, the program will not stop for additional user input at the second prompt.
Page 36 © 1999, By Randall Hyde Beta Draft - Do not distribute

Hello, World of Assembly Language
Instead, it will read the second integer (456) from the input buffer read during the execution of the
stdin.geti8 call.

In general, the stdin routines only read text from the user when the input buffer is empty. As long as the
input buffer contains additional characters, the input routines will attempt to read their data from the buffer.
You may take advantage of this behavior by writing code sequences such as the following:

stdout.put(“Enter two integer values: “);
stdin.geti32();
mov(eax, intval);
stdin.geti32();
mov(eax, AnotherIntVal);

This sequence allows the user to enter both values on the same line (separated by one or more white space
characters) thus preserving space on the screen. So the input buffer behavior is desirable every now and then.

Unfortunately, the buffered behavior of the input routines is definitely counter-intuitive at other times.
Fortunately, the HLA Standard Library provides two routines, stdin.ReadLn and stdin.FlushInput, that let
you control the standard input buffer. The stdin.ReadLn routine discards everything that is in the input buffer
and immediately requires the user to enter a new line of text. The stdin.FlushInput routine simply discards
everything that is in the buffer. The next time an input routine executes, the system will require a new line of
input from the user. You would typically call stdin.ReadLn immediately before some standard input routine;
you would normally call stdin.FlushInput immediately after a call to a standard input routine.

Note: If you are calling stdin.ReadLn and you find that you are having to input your data twice, this is a
good indication that you should be calling stdin.FlushInput rather than stdin.ReadLn. In general, you should
always be able to call stdin.FlushInput to flush the input buffer and read a new line of data on the next input
call. The stdin.ReadLn routine is rarely necessary, so you should use stdin.FlushInput unless you really need
to immediately force the input of a new line of text.

2.8.10 The stdin.get Macro

The stdin.get macro combines many of the standard input routines into a single call, in much the same
way that stdout.put combines all of the output routines into a single call. Actually, stdin.get is much easier to
use than stdout.put since the only parameters to this routine are a list of variable names.

Let’s rewrite the example given in the previous section:

stdout.put(“Enter two integer values: “);
stdin.geti32();
mov(eax, intval);
stdin.geti32();
mov(eax, AnotherIntVal);

Using the stdin.get macro, we could rewrite this code as:

stdout.put(“Enter two integer values: “);
stdin.get(intval, AnotherIntVal);

As you can see, the stdin.get routine is a little more convenient to use.

Note that stdin.get stores the input values directly into the memory variables you specify in the parame-
ter list; it does not return the values in a register unless you actually specify a register as a parameter. The
stdin.get parameters must all be variables or registers17.

17. Note that register input is always in hexadecimal or base 16. The next chapter will discuss hexadecimal numbers.
Beta Draft - Do not distribute © 1999, By Randall Hyde Page 37

Chapter Two Volume 1
2.9 Putting It All Together

This chapter has covered a lot of ground! While you’ve still got a lot to learn about assembly language
programming, this chapter, combined with your knowledge of high level languages, provides just enough
information to let you start writing real assembly language programs.

In this chapter, you’ve seen the basic format for an HLA program. You’ve seen how to declare integer,
character, and boolean variables. You have taken a look at the internal organization of the Intel 80x86 CPU
family and learned about the MOV, ADD, and SUB instructions. You’ve looked at the basic HLA high level
language control structures (IF, WHILE, REPEAT, FOR, BREAK, BREAKIF, FOREVER, and TRY) as
well as what constitutes a legal boolean expression in these statements. Finally, this chapter has introduced
several commonly-used routines in the HLA Standard Library.

You might think that knowing only three machine instructions is hardly sufficient to write meaningful
programs. However, those three instructions (mov, add, and sub), combined with the HLA high level control
structures and the HLA Standard Library routines are actually equivalent to knowing several dozen machine
instructions. Certainly enough to write simple programs. Indeed, with only a few more arithmetic instruc-
tions plus the ability to write your own procedures, you’ll be able to write almost any program. Of course,
your journey into the world of assembly language has only just begun; you’ll learn some more instructions,
and how to use them, starting in the next chapter.

2.10 Sample Programs

This section contains several little HLA programs that demonstrate the some of HLA’s features appear-
ing in this chapter. These short examples also demonstrate that it is possible to write meaningful (if simple)
programs in HLA using nothing more than the information appearing in this chapter. You may find all of the
sample programs appearing in this section in the CH02 subdirectory of the software that accompanies this
text.

2.10.1 Powers of Two Table Generation

The following sample program generates a table listing all the powers of two between 2**0 and 2**30.

// PowersOfTwo-
//
// This program generates a nicely-formatted
// "Powers of Two" table. It computes the
// various powers of two by successively
// doubling the value in the pwrOf2 variable.

program PowersOfTwo;
#include("stdlib.hhf");

static

 pwrOf2: int32;
 LoopCntr: int32;

begin PowersOfTwo;

 // Print a start up banner.

 stdout.put("Powers of two: ", nl, nl);
Page 38 © 1999, By Randall Hyde Beta Draft - Do not distribute

Hello, World of Assembly Language
 // Initialize "pwrOf2" with 2**0 (two raised to the zero power).

 mov(1, pwrOf2);

 // Because of the limitations of 32-bit signed integers,
 // we can only display 2**0..2**30.

 mov(0, LoopCntr);
 while(LoopCntr < 31) do

 stdout.put("2**(", LoopCntr:2, ") = ", pwrOf2:10, nl);

 // Double the value in pwrOf2 to compute the
 // next power of two.

 mov(pwrOf2, eax);
 add(eax, eax);
 mov(eax, pwrOf2);

 // Move on to the next loop iteration.

 inc(LoopCntr);

 endwhile;
 stdout.newln();

end PowersOfTwo;

Program 2.8 Powers of Two Table Generator Program

2.10.2 Checkerboard Program

This short little program demonstrates how to generate a checkerboard pattern with HLA.

// CheckerBoard-
//
// This program demonstrates how to draw a
// checkerboard using a set of nested while
// loops.

program CheckerBoard;
#include("stdlib.hhf");

static

 xCoord: int8; // Counts off eight squares in each row.
 yCoord: int8; // Counts off four pairs of squares in each column.
 ColCntr: int8; // Counts off four rows in each square.

begin CheckerBoard;

 mov(0, yCoord);
 while(yCoord < 4) do

 // Display a row that begins with black.

Beta Draft - Do not distribute © 1999, By Randall Hyde Page 39

Chapter Two Volume 1
 mov(4, ColCntr);
 repeat

 // Each square is a 4x4 group of
 // spaces (white) or asterisks (black).
 // Print out one row of asterisks/spaces
 // for the current row of squares:

 mov(0, xCoord);
 while(xCoord < 4) do

 stdout.put("**** ");
 add(1, xCoord);

 endwhile;
 stdout.newln();
 sub(1, ColCntr);

 until(ColCntr = 0);

 // Display a row that begins with white.

 mov(4, ColCntr);
 repeat

 // Print out a single row of
 // spaces/asterisks for this
 // row of squares:

 mov(0, xCoord);
 while(xCoord < 4) do

 stdout.put(" ****");
 add(1, xCoord);

 endwhile;
 stdout.newln();
 sub(1, ColCntr);

 until(ColCntr = 0);

 add(1, yCoord);

 endwhile;

end CheckerBoard;

Program 2.9 Checkerboard Generation Program

2.10.3 Fibonocci Number Generation

The Fibonocci sequence is very important to certain algorithms in Computer Science and other fields.
The following sample program generates a sequence of Fibonocci numbers for n=1..40.

// This program generates the fibonocci
// sequence for n=1..40.
Page 40 © 1999, By Randall Hyde Beta Draft - Do not distribute

Hello, World of Assembly Language
//
// The fibonocci sequence is defined recursively
// for positive integers as follows:
//
// fib(1) = 1;
// fib(2) = 1;
// fib(n) = fib(n-1) + fib(n-2).
//
// This program provides an iterative solution.

program fib;
#include("stdlib.hhf");

static

 FibCntr: int32;
 CurFib: int32;
 LastFib: int32;
 TwoFibsAgo: int32;

begin fib;

 // Some simple initialization:

 mov(1, LastFib);
 mov(1, TwoFibsAgo);

 // Print fib(1) and fib(2) as a special case:

 stdout.put
 (
 "fib(1) = 1", nl
 "fib(2) = 1", nl
);

 // Use a loop to compute the remaining fib values:

 mov(3, FibCntr);
 while(FibCntr <= 40) do

 // Get the last two computed fibonocci values
 // and add them together:

 mov(LastFib, ebx);
 mov(TwoFibsAgo, eax);
 add(ebx, eax);

 // Save the result and print it:

 mov(eax, CurFib);
 stdout.put("fib(",FibCntr:2, ") =", CurFib:10, nl);

 // Recycle current LastFib (in ebx) as TwoFibsAgo,
 // and recycle CurFib as LastFib.

 mov(eax, LastFib);
 mov(ebx, TwoFibsAgo);

 // Bump up our loop counter:
Beta Draft - Do not distribute © 1999, By Randall Hyde Page 41

Chapter Two Volume 1
 add(1, FibCntr);

 endwhile;

end fib;

Program 2.10 Fibonocci Sequence Generator
Page 42 © 1999, By Randall Hyde Beta Draft - Do not distribute

Data Representation
Data Representation Chapter Three

A big stumbling block many beginners encounter when attempting to learn assembly language is the
common use of the binary and hexadecimal numbering systems. Many programmers think that hexadecimal
(or hex1) numbers represent absolute proof that God never intended anyone to work in assembly language.
While it is true that hexadecimal numbers are a little different from what you may be used to, their advan-
tages outweigh their disadvantages by a large margin. Nevertheless, understanding these numbering systems
is important because their use simplifies other complex topics including boolean algebra and logic design,
signed numeric representation, character codes, and packed data.

3.1 Chapter Overview

This chapter discusses several important concepts including the binary and hexadecimal numbering sys-
tems, binary data organization (bits, nibbles, bytes, words, and double words), signed and unsigned number-
ing systems, arithmetic, logical, shift, and rotate operations on binary values, bit fields and packed data. This
is basic material and the remainder of this text depends upon your understanding of these concepts. If you
are already familiar with these terms from other courses or study, you should at least skim this material
before proceeding to the next chapter. If you are unfamiliar with this material, or only vaguely familiar with
it, you should study it carefully before proceeding. All of the material in this chapter is important! Do not
skip over any material. In addition to the basic material, this chapter also introduces some new HLA state-
ments and HLA Standard Library routines.

3.2 Numbering Systems

Most modern computer systems do not represent numeric values using the decimal system. Instead, they
typically use a binary or two’s complement numbering system. To understand the limitations of computer
arithmetic, you must understand how computers represent numbers.

3.2.1 A Review of the Decimal System

You’ve been using the decimal (base 10) numbering system for so long that you probably take it for
granted. When you see a number like “123”, you don’t think about the value 123; rather, you generate a
mental image of how many items this value represents. In reality, however, the number 123 represents:

1*102 + 2 * 101 + 3*100

or

100+20+3

In the positional numbering system, each digit appearing to the left of the decimal point represents a
value between zero and nine times an increasing power of ten. Digits appearing to the right of the decimal
point represent a value between zero and nine times an increasing negative power of ten. For example, the
value 123.456 means:

1*102 + 2*101 + 3*100 + 4*10-1 + 5*10-2 + 6*10-3

or

100 + 20 + 3 + 0.4 + 0.05 + 0.006

1. Hexadecimal is often abbreviated as hex even though, technically speaking, hex means base six, not base sixteen.
Beta Draft - Do not distribute © 1999, By Randall Hyde Page 43

Chapter Three Volume 1
3.2.2 The Binary Numbering System

Most modern computer systems (including PCs) operate using binary logic. The computer represents
values using two voltage levels (usually 0v and +2.4..5v). With two such levels we can represent exactly two
different values. These could be any two different values, but they typically represent the values zero and
one. These two values, coincidentally, correspond to the two digits used by the binary numbering system.
Since there is a correspondence between the logic levels used by the 80x86 and the two digits used in the
binary numbering system, it should come as no surprise that the PC employs the binary numbering system.

The binary numbering system works just like the decimal numbering system, with two exceptions:
binary only allows the digits 0 and 1 (rather than 0-9), and binary uses powers of two rather than powers of
ten. Therefore, it is very easy to convert a binary number to decimal. For each “1” in the binary string, add in
2n where “n” is the zero-based position of the binary digit. For example, the binary value 110010102 repre-
sents:

1*27 + 1*26 + 0*25 + 0*24 + 1*23 + 0*22 + 1*21 + 0*20

=
 128 + 64 + 8 + 2

=
20210

To convert decimal to binary is slightly more difficult. You must find those powers of two which, when
added together, produce the decimal result. One method is to work from a large power of two down to 20.
Consider the decimal value 1359:

• 210 =1024, 211=2048. So 1024 is the largest power of two less than 1359. Subtract 1024 from
1359 and begin the binary value on the left with a “1” digit. Binary = ”1”, Decimal result is
1359 - 1024 = 335.

• The next lower power of two (29 = 512) is greater than the result from above, so add a “0” to
the end of the binary string. Binary = “10”, Decimal result is still 335.

• The next lower power of two is 256 (28). Subtract this from 335 and add a “1” digit to the end
of the binary number. Binary = “101”, Decimal result is 79.

• 128 (27) is greater than 79, so tack a “0” to the end of the binary string. Binary = “1010”, Dec-
imal result remains 79.

• The next lower power of two (26 = 64) is less than79, so subtract 64 and append a “1” to the
end of the binary string. Binary = “10101”, Decimal result is 15.

• 15 is less than the next power of two (25 = 32) so simply add a “0” to the end of the binary
string. Binary = “101010”, Decimal result is still 15.

• 16 (24) is greater than the remainder so far, so append a “0” to the end of the binary string.
Binary = “1010100”, Decimal result is 15.

• 23 (eight) is less than 15, so stick another “1” digit on the end of the binary string. Binary =
“10101001”, Decimal result is 7.

• 22 is less than seven, so subtract four from seven and append another one to the binary string.
Binary = “101010011”, decimal result is 3.

• 21 is less than three, so append a one to the end of the binary string and subtract two from the
decimal value. Binary = “1010100111”, Decimal result is now 1.

• Finally, the decimal result is one, which is 20, so add a final “1” to the end of the binary string.
The final binary result is “10101001111”

If you actually have to convert a decimal number to binary by hand, the algorithm above probably isn’t
the easiest to master. A simpler solution is the “even/odd – divide by two” algorithm. This algorithm uses
the following steps:

• If the number is even, emit a zero. If the number is odd, emit a one.
• Divide the number by two and throw away any fractional component or remainder.
Page 44 © 1999, By Randall Hyde Beta Draft - Do not distribute

Data Representation
• If the quotient is zero, the algorithm is complete.
• If the quotient is not zero and is odd, prefix the current string you’ve got with a one; if the

number is even prefix your binary string with zero (“prefix” means add the new digit to the left
of the string you’ve produced thus far).

• Go back to step two above and repeat.

Fortunately, you’ll rarely need to convert decimal numbers directly to binary strings, so neither of these
algorithms is particularly important in real life.

Binary numbers, although they have little importance in high level languages, appear everywhere in
assembly language programs (even if you don’t convert between decimal and binary). So you should be
somewhat comfortable with them.

3.2.3 Binary Formats

In the purest sense, every binary number contains an infinite number of digits (or bits which is short for
binary digits). For example, we can represent the number five by:

101 00000101 0000000000101 ... 000000000000101

Any number of leading zero bits may precede the binary number without changing its value.

We will adopt the convention of ignoring any leading zeros if present in a value. For example, 1012 rep-
resents the number five but since the 80x86 works with groups of eight bits, we’ll find it much easier to zero
extend all binary numbers to some multiple of four or eight bits. Therefore, following this convention, we’d
represent the number five as 01012 or 000001012.

In the United States, most people separate every three digits with a comma to make larger numbers eas-
ier to read. For example, 1,023,435,208 is much easier to read and comprehend than 1023435208. We’ll
adopt a similar convention in this text for binary numbers. We will separate each group of four binary bits
with an underscore. For example, we will write the binary value 1010111110110010 as
1010_1111_1011_0010.

We often pack several values together into the same binary number. One form of the 80x86 MOV
instruction uses the binary encoding 1011 0rrr dddd dddd to pack three items into 16 bits: a five-bit operation
code (1_0110), a three-bit register field (rrr), and an eight-bit immediate value (dddd_dddd). For conve-
nience, we’ll assign a numeric value to each bit position. We’ll number each bit as follows:

1) The rightmost bit in a binary number is bit position zero.

2) Each bit to the left is given the next successive bit number.

An eight-bit binary value uses bits zero through seven:

X7 X6 X5 X4 X3 X2 X1 X0

A 16-bit binary value uses bit positions zero through fifteen:

X15 X14 X13 X12 X11 X10 X9 X8 X7 X6 X5 X4 X3 X2 X1 X0

A 32-bit binary value uses bit positions zero through 31, etc.

Bit zero is usually referred to as the low order (L.O.) bit (some refer to this as the least significant bit).
The left-most bit is typically called the high order (H.O.) bit (or the most significant bit). We’ll refer to the
intermediate bits by their respective bit numbers.
Beta Draft - Do not distribute © 1999, By Randall Hyde Page 45

Chapter Three Volume 1
3.3 Data Organization

In pure mathematics a value may take an arbitrary number of bits. Computers, on the other hand, gener-
ally work with some specific number of bits. Common collections are single bits, groups of four bits (called
nibbles), groups of eight bits (bytes), groups of 16 bits (words), groups of 32 bits (double words or dwords),
groups of 64-bits (quad words or qwords), and more. The sizes are not arbitrary. There is a good reason for
these particular values. This section will describe the bit groups commonly used on the Intel 80x86 chips.

3.3.1 Bits

The smallest “unit” of data on a binary computer is a single bit. Since a single bit is capable of repre-
senting only two different values (typically zero or one) you may get the impression that there are a very
small number of items you can represent with a single bit. Not true! There are an infinite number of items
you can represent with a single bit.

With a single bit, you can represent any two distinct items. Examples include zero or one, true or false,
on or off, male or female, and right or wrong. However, you are not limited to representing binary data types
(that is, those objects which have only two distinct values). You could use a single bit to represent the num-
bers 723 and 1,245. Or perhaps 6,254 and 5. You could also use a single bit to represent the colors red and
blue. You could even represent two unrelated objects with a single bit. For example, you could represent the
color red and the number 3,256 with a single bit. You can represent any two different values with a single bit.
However, you can represent only two different values with a single bit.

To confuse things even more, different bits can represent different things. For example, one bit might be
used to represent the values zero and one, while an adjacent bit might be used to represent the values true
and false. How can you tell by looking at the bits? The answer, of course, is that you can’t. But this illus-
trates the whole idea behind computer data structures: data is what you define it to be. If you use a bit to rep-
resent a boolean (true/false) value then that bit (by your definition) represents true or false. For the bit to
have any real meaning, you must be consistent. That is, if you’re using a bit to represent true or false at one
point in your program, you shouldn’t use the true/false value stored in that bit to represent red or blue later.

Since most items you’ll be trying to model require more than two different values, single bit values
aren’t the most popular data type you’ll use. However, since everything else consists of groups of bits, bits
will play an important role in your programs. Of course, there are several data types that require two distinct
values, so it would seem that bits are important by themselves. However, you will soon see that individual
bits are difficult to manipulate, so we’ll often use other data types to represent boolean values.

3.3.2 Nibbles

A nibble is a collection of four bits. It wouldn’t be a particularly interesting data structure except for two
items: BCD (binary coded decimal) numbers2 and hexadecimal numbers. It takes four bits to represent a sin-
gle BCD or hexadecimal digit. With a nibble, we can represent up to 16 distinct values since there are 16
unique combinations of a string of four bits:

0000
0001
0010
0011
0100
0101
0110
0111
1000

2. Binary coded decimal is a numeric scheme used to represent decimal numbers using four bits for each decimal digit.
Page 46 © 1999, By Randall Hyde Beta Draft - Do not distribute

Data Representation
1001
1010
1011
1100
1101
1110
1111

In the case of hexadecimal numbers, the values 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F are repre-
sented with four bits (see “The Hexadecimal Numbering System” on page 50). BCD uses ten different digits
(0, 1, 2, 3, 4, 5, 6, 7, 8, 9) and requires four bits. In fact, any sixteen distinct values can be represented with a
nibble, but hexadecimal and BCD digits are the primary items we can represent with a single nibble.

3.3.3 Bytes

Without question, the most important data structure used by the 80x86 microprocessor is the byte. A
byte consists of eight bits and is the smallest addressable datum (data item) on the 80x86 microprocessor.
Main memory and I/O addresses on the 80x86 are all byte addresses. This means that the smallest item that
can be individually accessed by an 80x86 program is an eight-bit value. To access anything smaller requires
that you read the byte containing the data and mask out the unwanted bits. The bits in a byte are normally
numbered from zero to seven as shown in Figure 3.1.

Figure 3.1 Bit Numbering

Bit 0 is the low order bit or least significant bit, bit 7 is the high order bit or most significant bit of the
byte. We’ll refer to all other bits by their number.

Note that a byte also contains exactly two nibbles (see Figure 3.2).

Figure 3.2 The Two Nibbles in a Byte

Bits 0..3 comprise the low order nibble, bits 4..7 form the high order nibble. Since a byte contains
exactly two nibbles, byte values require two hexadecimal digits.

Since a byte contains eight bits, it can represent 28, or 256, different values. Generally, we’ll use a byte
to represent numeric values in the range 0..255, signed numbers in the range -128..+127 (see “Signed and
Unsigned Numbers” on page 59), ASCII/IBM character codes, and other special data types requiring no
more than 256 different values. Many data types have fewer than 256 items so eight bits is usually sufficient.

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

H.O. Nibble L.O. Nibble
Beta Draft - Do not distribute © 1999, By Randall Hyde Page 47

Chapter Three Volume 1
Since the 80x86 is a byte addressable machine (see the next volume), it turns out to be more efficient to
manipulate a whole byte than an individual bit or nibble. For this reason, most programmers use a whole
byte to represent data types that require no more than 256 items, even if fewer than eight bits would suffice.
For example, we’ll often represent the boolean values true and false by 000000012 and 000000002 (respec-
tively).

Probably the most important use for a byte is holding a character code. Characters typed at the key-
board, displayed on the screen, and printed on the printer all have numeric values. To allow it to communi-
cate with the rest of the world, the IBM PC uses a variant of the ASCII character set (see “The ASCII
Character Encoding” on page 85). There are 128 defined codes in the ASCII character set. IBM uses the
remaining 128 possible values for extended character codes including European characters, graphic sym-
bols, Greek letters, and math symbols.

Because bytes are the smallest unit of storage in the 80x86 memory space, bytes also happen to be the
smallest variable you can create in an HLA program. As you saw in the last chapter, you can declare an
eight-bit signed integer variable using the int8 data type. Since int8 objects are signed, you can represent
values in the range -128..+127 using an int8 variable (see “Signed and Unsigned Numbers” on page 59 for a
discussion of signed number formats). You should only store signed values into int8 variables; if you want
to create an arbitrary byte variable, you should use the byte data type, as follows:

static
byteVar: byte;

The byte data type is a partially untyped data type. The only type information associated with byte objects is
their size (one byte). You may store any one-byte object (small signed integers, small unsigned integers,
characters, etc.) into a byte variable. It is up to you to keep track of the type of object you’ve put into a byte
variable.

3.3.4 Words

A word is a group of 16 bits. We’ll number the bits in a word starting from zero on up to fifteen. The bit
numbering appears in Figure 3.3.

Figure 3.3 Bit Numbers in a Word

Like the byte, bit 0 is the low order bit. For words, bit 15 is the high order bit. When referencing the
other bits in a word use their bit position number.

Notice that a word contains exactly two bytes. Bits 0 through 7 form the low order byte, bits 8 through
15 form the high order byte (see Figure 3.4).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Page 48 © 1999, By Randall Hyde Beta Draft - Do not distribute

Data Representation
Figure 3.4 The Two Bytes in a Word

Naturally, a word may be further broken down into four nibbles as shown in Figure 3.5.

Figure 3.5 Nibbles in a Word

 Nibble zero is the low order nibble in the word and nibble three is the high order nibble of the word.
We’ll simply refer to the other two nibbles as “nibble one” or “nibble two. “

With 16 bits, you can represent 216 (65,536) different values. These could be the values in the range
0..65,535 or, as is usually the case, -32,768..+32,767, or any other data type with no more than 65,536 val-
ues. The three major uses for words are signed integer values, unsigned integer values, and UNICODE char-
acters.

Words can represent integer values in the range 0..65,535 or -32,768..32,767. Unsigned numeric values
are represented by the binary value corresponding to the bits in the word. Signed numeric values use the
two’s complement form for numeric values (see “Signed and Unsigned Numbers” on page 59). As UNI-
CODE characters, words can represent up to 65,536 different characters, allowing the use of non-Roman
character sets in a computer program. UNICODE is an international standard, like ASCII, that allows com-
mputers to process non-Roman characters like Asian, Greek, and Russian characters.

Like bytes, you can also create word variables in an HLA program. Of course, in the last chapter you
saw how to create sixteen-bit signed integer variables using the int16 data type. To create an arbitrary word
variable, just use the word data type, as follows:

static
w: word;

3.3.5 Double Words

A double word is exactly what its name implies, a pair of words. Therefore, a double word quantity is 32
bits long as shown in Figure 3.6.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

H. O. Byte L. O. Byte

H. O. Nibble L. O. Nibble

Nibble #3 Nibble #2 Nibble #1 Nibble #0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Beta Draft - Do not distribute © 1999, By Randall Hyde Page 49

Chapter Three Volume 1
Figure 3.6 Bit Numbers in a Double Word

Naturally, this double word can be divided into a high order word and a low order word, four different
bytes, or eight different nibbles (see Figure 3.7).

Figure 3.7 Nibbles, Bytes, and Words in a Double Word

Double words can represent all kinds of different things. A common item you will represent with a dou-
ble word is a 32-bit integer value (which allows unsigned numbers in the range 0..4,294,967,295 or signed
numbers in the range -2,147,483,648..2,147,483,647). 32-bit floating point values also fit into a double
word. Another common use for dword objects is to store pointer variables.

In the previous chapter, you saw how to create 32-bit (dword) signed integer variables using the int32
data type. You can also create an arbitrary double word variable using the dword data type as the following
example suggests:

static
d: dword;

3.4 The Hexadecimal Numbering System

A big problem with the binary system is verbosity. To represent the value 20210 requires eight binary
digits. The decimal version requires only three decimal digits and, thus, represents numbers much more
compactly than does the binary numbering system. This fact was not lost on the engineers who designed
binary computer systems. When dealing with large values, binary numbers quickly become too unwieldy.
Unfortunately, the computer thinks in binary, so most of the time it is convenient to use the binary number-
ing system. Although we can convert between decimal and binary, the conversion is not a trivial task. The

31 23 15 7 0

31 23 15 7 0

H.O. Word L.O. Word

H.O. Byte Byte # 2 Byte # 1 L.O. Byte

31 23 15 7 0

Nibble #7 #6 #5 #4 #3 #2 #1 #0
 H. O. L. O.

31 23 15 7 0
Page 50 © 1999, By Randall Hyde Beta Draft - Do not distribute

Data Representation
hexadecimal (base 16) numbering system solves these problems. Hexadecimal numbers offer the two fea-
tures we’re looking for: they’re very compact, and it’s simple to convert them to binary and vice versa.
Because of this, most computer systems engineers use the hexadecimal numbering system. Since the radix
(base) of a hexadecimal number is 16, each hexadecimal digit to the left of the hexadecimal point represents
some value times a successive power of 16. For example, the number 123416 is equal to:

1 * 163 + 2 * 162 + 3 * 161 + 4 * 160

or

4096 + 512 + 48 + 4 = 466010.

Each hexadecimal digit can represent one of sixteen values between 0 and 1510. Since there are only ten
decimal digits, we need to invent six additional digits to represent the values in the range 1010 through 1510.
Rather than create new symbols for these digits, we’ll use the letters A through F. The following are all
examples of valid hexadecimal numbers:

123416 DEAD16 BEEF16 0AFB16 FEED16 DEAF16

Since we’ll often need to enter hexadecimal numbers into the computer system, we’ll need a different
mechanism for representing hexadecimal numbers. After all, on most computer systems you cannot enter a
subscript to denote the radix of the associated value. We’ll adopt the following conventions:

• All hexadecimal values begin with a “$” character, e.g., $123A4.
• All binary values begin with a percent sign (“%”).
• Decimal numbers do not have a prefix character.
• If the radix is clear from the context, this text may drop the leading “$” or “%” character.

Examples of valid hexadecimal numbers:

$1234 $DEAD $BEEF $AFB $FEED $DEAF

 As you can see, hexadecimal numbers are compact and easy to read. In addition, you can easily convert
between hexadecimal and binary. Consider the following table:

Table 4: Binary/Hex Conversion

Binary Hexadecimal

%0000 $0

%0001 $1

%0010 $2

%0011 $3

%0100 $4

%0101 $5

%0110 $6

%0111 $7

%1000 $8

%1001 $9

%1010 $A

%1011 $B
Beta Draft - Do not distribute © 1999, By Randall Hyde Page 51

Chapter Three Volume 1
This table provides all the information you’ll ever need to convert any hexadecimal number into a binary
number or vice versa.

To convert a hexadecimal number into a binary number, simply substitute the corresponding four bits
for each hexadecimal digit in the number. For example, to convert $ABCD into a binary value, simply con-
vert each hexadecimal digit according to the table above:

 0 A B C D Hexadecimal

 0000 1010 1011 1100 1101 Binary

To convert a binary number into hexadecimal format is almost as easy. The first step is to pad the binary
number with zeros to make sure that there is a multiple of four bits in the number. For example, given the
binary number 1011001010, the first step would be to add two bits to the left of the number so that it con-
tains 12 bits. The converted binary value is 001011001010. The next step is to separate the binary value into
groups of four bits, e.g., 0010_1100_1010. Finally, look up these binary values in the table above and substi-
tute the appropriate hexadecimal digits, i.e., $2CA. Contrast this with the difficulty of conversion between
decimal and binary or decimal and hexadecimal!

Since converting between hexadecimal and binary is an operation you will need to perform over and
over again, you should take a few minutes and memorize the table above. Even if you have a calculator that
will do the conversion for you, you’ll find manual conversion to be a lot faster and more convenient when
converting between binary and hex.

3.5 Arithmetic Operations on Binary and Hexadecimal Numbers

There are several operations we can perform on binary and hexadecimal numbers. For example, we can
add, subtract, multiply, divide, and perform other arithmetic operations. Although you needn’t become an
expert at it, you should be able to, in a pinch, perform these operations manually using a piece of paper and
a pencil. Having just said that you should be able to perform these operations manually, the correct way to
perform such arithmetic operations is to have a calculator that does them for you. There are several such cal-
culators on the market; the following table lists some of the manufacturers who produce such devices:

Manufacturers of Hexadecimal Calculators:

• Casio
• Hewlett-Packard
• Sharp
• Texas Instruments

 This list is by no means exhaustive. Other calculator manufacturers probably produce these devices as
well. The Hewlett-Packard devices are arguably the best of the bunch . However, they are more expensive
than the others. Sharp and Casio produce units which sell for well under $50. If you plan on doing any
assembly language programming at all, owning one of these calculators is essential.

To understand why you should spend the money on a calculator, consider the following arithmetic prob-
lem:

%1100 $C

%1101 $D

%1110 $E

%1111 $F

Table 4: Binary/Hex Conversion

Binary Hexadecimal
Page 52 © 1999, By Randall Hyde Beta Draft - Do not distribute

Data Representation
 $9
+ $1

You’re probably tempted to write in the answer “$10” as the solution to this problem. But that is not correct!
The correct answer is ten, which is “$A”, not sixteen which is “$10”. A similar problem exists with the arith-
metic problem:

 $10
- $1

You’re probably tempted to answer “$9” even though the true answer is “$F”. Remember, this problem is
asking “what is the difference between sixteen and one?” The answer, of course, is fifteen which is “$F”.

Even if the two problems above don’t bother you, in a stressful situation your brain will switch back into
decimal mode while you’re thinking about something else and you’ll produce the incorrect result. Moral of
the story – if you must do an arithmetic computation using hexadecimal numbers by hand, take your time
and be careful about it. Either that, or convert the numbers to decimal, perform the operation in decimal, and
convert them back to hexadecimal.

3.6 A Note About Numbers vs. Representation

Many people confuse numbers and their representation. A common question beginning assembly lan-
guage students have is “I’ve got a binary number in the EAX register, how do I convert that to a hexadecimal
number in the EAX register?” The answer is “you don’t.” Although a strong argument could be made that
numbers in memory or in registers are represented in binary, it’s best to view values in memory or in a regis-
ter as abstract numeric quantities. Strings of symbols like 128, $80, or %1000_0000 are not different num-
bers; they are simply different representations for the same abstract quantity that we often refer to as “one
hundred twenty-eight.” Inside the computer, a number is a number regardless of representation; the only
time representation matters is when you input or output the value in a human readable form.

Human readable forms of numeric quantities are always strings of characters. To print the value 128 in
human readable form, you must convert the numeric value 128 to the three-character sequence ‘1’ followed
by ‘2’ followed by ‘8’. This would provide the decimal representation of the numeric quantity. If you pre-
fer, you could convert the numeric value 128 to the three character sequence “$80”. It’s the same number,
but we’ve converted it to a different sequence of characters because (presumably) we wanted to view the
number in hexadecimal rather than decimal. Likewise, if we want to see the number in binary, then we must
convert this numeric value to a string containing a one followed by seven zeros.

By default, HLA displays all byte, word, and dword variables using the hexadecimal numbering system
when you use the stdout.put routine. Likewise, HLA’s stdout.put routine will display all register values in
hex. Consider the following program that converts values input as decimal numbers to their hexadecimal
equivalents:

program convertToHex;
#include(“stdlib.hhf”);
static

value: int32;
begin convertToHex;

stdout.put(“Input a decimal value:”);
stdin.get(value);
mov(value, eax);
stdout.put(“The value “, value, “ converted to hex is $”, eax, nl);

end convertToHex;
Beta Draft - Do not distribute © 1999, By Randall Hyde Page 53

Chapter Three Volume 1
Program 3.1 Decimal to Hexadecimal Conversion Program

In a similar fashion, the default input base is also hexadecimal for registers and byte, word, or dword
variables. The following program is the converse of the one above- it inputs a hexadecimal value and out-
puts it as decimal:

program convertToDecimal;
#include(“stdlib.hhf”);
static

iValue: int32;
begin convertToDecimal;

stdout.put(“Input a hexadecimal value: “);
stdin.get(ebx);
mov(ebx, iValue);
stdout.put(“The value $”, ebx, “ converted to decimal is “, iValue, nl);

end convertToDecimal;

Program 3.2 Hexadecimal to Decimal Conversion Program

Just because the HLA stdout.put routine chooses decimal as the default output base for int8, int16, and
int32 variables doesn’t mean that these variables hold “decimal” numbers. Remember, memory and regis-
ters hold numeric values, not hexadecimal or decimal values. The stdout.put routine converts these numeric
values to strings and prints the resulting strings. The choice of hexadecimal vs. decimal output was a design
choice in the HLA language, nothing more. You could very easily modify HLA so that it outputs registers
and byte, word, or dword variables as decimal values rather than as hexadecimal. If you need to print the
value of a register or byte, word, or dword variable as a decimal value, simply call one of the putiX routines
to do this. The stdout.puti8 routine will output its parameter as an eight-bit signed integer. Any eight-bit
parameter will work. So you could pass an eight-bit register, an int8 variable, or a byte variable as the
parameter to stdout.puti8 and the result will always be decimal. The stdout.puti16 and stdout.puti32 provide
the same capabilities for 16-bit and 32-bit objects. The following program demonstrates the decimal conver-
sion program (Program 3.2 above) using only the EAX register (i.e., it does not use the variable iValue):

program convertToDecimal2;
#include(“stdlib.hhf”);
begin convertToDecimal2;

stdout.put(“Input a hexadecimal value: “);
stdin.get(ebx);
stdout.put(“The value $”, ebx, “ converted to decimal is “);
stdout.puti32(ebx);
stdout.newln();

end convertToDecimal2;

Program 3.3 Variable-less Hexadecimal to Decimal Converter
Page 54 © 1999, By Randall Hyde Beta Draft - Do not distribute

Data Representation
Note that HLA’s stdin.get routine uses the same default base for input as stdout.put uses for output.
That is, if you attempt to read an int8, int16, or int32 variable, the default input base is decimal. If you
attempt to read a register or byte, word, or dword variable, the default input base is hexadecimal. If you want
to change the default input base to decimal when reading a register or a byte, word, or dword variable, then
you can use stdin.geti8, stdin.geti16, or stdin.geti32.

If you want to go in the opposite direction, that is you want to input or output an int8, int16, or int32
variable as a hexadecimal value, you can call the stdout.puth, stdout.putw, stdout.putdw, stdin.geth,
stdin.getw, or stdin.getdw routines. The stdout.puth, stdout.putw, and stdout.putdw routines write eight-bit,
16-bit, or 32-bit objects as hexadecimal values. The stdin.geth, stdin.getw, and stdin.getdw routines read
eight-bit, 16-bit, and 32-bit values respectively; they return their results in the AL, AX, or EAX registers.
The following program demonstrates the use of a few of these routines:

program hexIO;

#include("stdlib.hhf");

static
 i32: int32;

begin hexIO;

 stdout.put("Enter a hexadecimal value: ");
 stdin.getdw();
 mov(eax, i32);
 stdout.put("The value you entered was $");
 stdout.putdw(i32);
 stdout.newln();

end hexIO;

Program 3.4 Demonstration of stdin.getdw and stdout.putdw

3.7 Logical Operations on Bits

There are four main logical operations we’ll need to perform on hexadecimal and binary numbers:
AND, OR, XOR (exclusive-or), and NOT. Unlike the arithmetic operations, a hexadecimal calculator isn’t
necessary to perform these operations. It is often easier to do them by hand than to use an electronic device
to compute them. The logical AND operation is a dyadic3 operation (meaning it accepts exactly two oper-
ands). These operands are single binary (base 2) bits. The AND operation is:

0 and 0 = 0

0 and 1 = 0

1 and 0 = 0

1 and 1 = 1

A compact way to represent the logical AND operation is with a truth table. A truth table takes the fol-
lowing form:

3. Many texts call this a binary operation. The term dyadic means the same thing and avoids the confusion with the binary
numbering system.
Beta Draft - Do not distribute © 1999, By Randall Hyde Page 55

Chapter Three Volume 1
This is just like the multiplication tables you encountered in elementary school. The values in the left
column correspond to the leftmost operand of the AND operation. The values in the top row correspond to
the rightmost operand of the AND operation. The value located at the intersection of the row and column
(for a particular pair of input values) is the result of logically ANDing those two values together. In English,
the logical AND operation is, “If the first operand is one and the second operand is one, the result is one; oth-
erwise the result is zero.”

One important fact to note about the logical AND operation is that you can use it to force a zero result.
If one of the operands is zero, the result is always zero regardless of the other operand. In the truth table
above, for example, the row labelled with a zero input contains only zeros and the column labelled with a
zero only contains zero results. Conversely, if one operand contains a one, the result is exactly the value of
the second operand. These features of the AND operation are very important, particularly when we want to
force individual bits in a bit string to zero. We will investigate these uses of the logical AND operation in the
next section.

The logical OR operation is also a dyadic operation. Its definition is:

0 or 0 = 0

0 or 1 = 1

1 or 0 = 1

1 or 1 = 1

The truth table for the OR operation takes the following form:

Colloquially, the logical OR operation is, “If the first operand or the second operand (or both) is one, the
result is one; otherwise the result is zero.” This is also known as the inclusive-OR operation.

If one of the operands to the logical-OR operation is a one, the result is always one regardless of the sec-
ond operand’s value. If one operand is zero, the result is always the value of the second operand. Like the
logical AND operation, this is an important side-effect of the logical-OR operation that will prove quite use-
ful when working with bit strings since it lets you force individual bits to one.

Note that there is a difference between this form of the inclusive logical OR operation and the standard
English meaning. Consider the phrase “I am going to the store or I am going to the park.” Such a statement
implies that the speaker is going to the store or to the park but not to both places. Therefore, the English ver-
sion of logical OR is slightly different than the inclusive-OR operation; indeed, it is closer to the exclu-
sive-OR operation.

The logical XOR (exclusive-or) operation is also a dyadic operation. It is defined as follows:

Table 5: AND Truth Table

AND 0 1

0 0 0

1 0 1

Table 6: OR Truth Table

OR 0 1

0 0 1

1 1 1
Page 56 © 1999, By Randall Hyde Beta Draft - Do not distribute

Data Representation
0 xor 0 = 0

0 xor 1 = 1

1 xor 0 = 1

1 xor 1 = 0

The truth table for the XOR operation takes the following form:

In English, the logical XOR operation is, “If the first operand or the second operand, but not both, is
one, the result is one; otherwise the result is zero.” Note that the exclusive-or operation is closer to the
English meaning of the word “or” than is the logical OR operation.

If one of the operands to the logical exclusive-OR operation is a one, the result is always the inverse of
the other operand; that is, if one operand is one, the result is zero if the other operand is one and the result is
one if the other operand is zero. If the first operand contains a zero, then the result is exactly the value of the
second operand. This feature lets you selectively invert bits in a bit string.

 The logical NOT operation is a monadic operation (meaning it accepts only one operand). It is:

NOT 0 = 1

NOT 1 = 0

The truth table for the NOT operation takes the following form:

3.8 Logical Operations on Binary Numbers and Bit Strings

As described in the previous section, the logical functions work only with single bit operands. Since the
80x86 uses groups of eight, sixteen, or thirty-two bits, we need to extend the definition of these functions to
deal with more than two bits. Logical functions on the 80x86 operate on a bit-by-bit (or bitwise) basis. Given
two values, these functions operate on bit zero producing bit zero of the result. They operate on bit one of the
input values producing bit one of the result, etc. For example, if you want to compute the logical AND of the
following two eight-bit numbers, you would perform the logical AND operation on each column indepen-
dently of the others:

%1011_0101
%1110_1110

%1010_0100

Table 7: XOR Truth Table

XOR 0 1

0 0 1

1 1 0

Table 8: NOT Truth Table

NOT 0 1

1 0
Beta Draft - Do not distribute © 1999, By Randall Hyde Page 57

Chapter Three Volume 1
This bit-by-bit form of execution can be easily applied to the other logical operations as well.

Since we’ve defined logical operations in terms of binary values, you’ll find it much easier to perform
logical operations on binary values than on values in other bases. Therefore, if you want to perform a logical
operation on two hexadecimal numbers, you should convert them to binary first. This applies to most of the
basic logical operations on binary numbers (e.g., AND, OR, XOR, etc.).

The ability to force bits to zero or one using the logical AND/OR operations and the ability to invert
bits using the logical XOR operation is very important when working with strings of bits (e.g., binary num-
bers). These operations let you selectively manipulate certain bits within some value while leaving other bits
unaffected. For example, if you have an eight-bit binary value X and you want to guarantee that bits four
through seven contain zeros, you could logically AND the value X with the binary value %0000_1111. This
bitwise logical AND operation would force the H.O. four bits to zero and pass the L.O. four bits of X through
unchanged. Likewise, you could force the L.O. bit of X to one and invert bit number two of X by logically
ORing X with %0000_0001 and logically exclusive-ORing X with %0000_0100, respectively. Using the log-
ical AND, OR, and XOR operations to manipulate bit strings in this fashion is known as masking bit strings.
We use the term masking because we can use certain values (one for AND, zero for OR/XOR) to ‘mask out’
or ‘mask in’ certain bits from the operation when forcing bits to zero, one, or their inverse.

The 80x86 CPUs support four instructions that apply these bitwise logical operations to their operands.
The instructions are AND, OR, XOR, and NOT. The AND, OR, and XOR instructions use the same syntax
as the ADD and SUB instructions, that is,

and(source, dest);
 or(source, dest);
xor(source, dest);

These operands have the same limitations as the ADD operands. Specifically, the source operand has to be a
constant, memory, or register operand and the dest operand must be a memory or register operand. Also, the
operands must be the same size and they cannot both be memory operands. These instructions compute the
obvious bitwise logical operation via the equation:

dest = dest operator source

The 80x86 logical NOT instruction, since it has only a single operand, uses a slightly different syntax.
This instruction takes the following form:

not(dest);

Note that this instruction has a single operand. It computes the following result:

dest = NOT(dest)

The dest operand (for not) must be a register or memory operand. This instruction inverts all the bits in the
specified destination operand.

The following program inputs two hexadecimal values from the user and calculates their logical AND,
OR, XOR, and NOT:

program logicalOp;
#include("stdlib.hhf");
begin logicalOp;

 stdout.put("Input left operand: ");
 stdin.get(eax);
 stdout.put("Input right operand: ");
 stdin.get(ebx);

 mov(eax, ecx);
 and(ebx, ecx);
 stdout.put("$", eax, " AND $", ebx, " = $", ecx, nl);
Page 58 © 1999, By Randall Hyde Beta Draft - Do not distribute

Data Representation

 mov(eax, ecx);
 or(ebx, ecx);
 stdout.put("$", eax, " OR $", ebx, " = $", ecx, nl);

 mov(eax, ecx);
 xor(ebx, ecx);
 stdout.put("$", eax, " XOR $", ebx, " = $", ecx, nl);

 mov(eax, ecx);
 not(ecx);
 stdout.put("NOT $", eax, " = $", ecx, nl);

 mov(ebx, ecx);
 not(ecx);
 stdout.put("NOT $", ebx, " = $", ecx, nl);

end logicalOp;

Program 3.5 AND, OR, XOR, and NOT Example

3.9 Signed and Unsigned Numbers

So far, we’ve treated binary numbers as unsigned values. The binary number ...00000 represents zero,
...00001 represents one, ...00010 represents two, and so on toward infinity. What about negative numbers?
Signed values have been tossed around in previous sections and we’ve mentioned the two’s complement
numbering system, but we haven’t discussed how to represent negative numbers using the binary numbering
system. That is what this section is all about!

To represent signed numbers using the binary numbering system we have to place a restriction on our
numbers: they must have a finite and fixed number of bits. For our purposes, we’re going to severely limit
the number of bits to eight, 16, 32, or some other small number of bits.

With a fixed number of bits we can only represent a certain number of objects. For example, with eight
bits we can only represent 256 different values. Negative values are objects in their own right, just like posi-
tive numbers; therefore, we’ll have to use some of the 256 different eight-bit values to represent negative
numbers. In other words, we’ve got to use up some of the (unsigned) positive numbers to represent negative
numbers. To make things fair, we’ll assign half of the possible combinations to the negative values and half
to the positive values and zero. So we can represent the negative values -128..-1 and the non-negative values
0..127 with a single eight bit byte. With a 16-bit word we can represent values in the range -32,768..+32,767.
With a 32-bit double word we can represent values in the range -2,147,483,648..+2,147,483,647. In general,
with n bits we can represent the signed values in the range -2n-1 to +2n-1-1.

Okay, so we can represent negative values. Exactly how do we do it? Well, there are many ways, but the
80x86 microprocessor uses the two’s complement notation. In the two’s complement system, the H.O. bit of
a number is a sign bit. If the H.O. bit is zero, the number is positive; if the H.O. bit is one, the number is neg-
ative. Examples:

For 16-bit numbers:

$8000 is negative because the H.O. bit is one.

 $100 is positive because the H.O. bit is zero.

 $7FFF is positive.

 $FFFF is negative.
Beta Draft - Do not distribute © 1999, By Randall Hyde Page 59

Chapter Three Volume 1
 $FFF is positive.

If the H.O. bit is zero, then the number is positive and is stored as a standard binary value. If the H.O. bit
is one, then the number is negative and is stored in the two’s complement form. To convert a positive number
to its negative, two’s complement form, you use the following algorithm:

1) Invert all the bits in the number, i.e., apply the logical NOT function.

2) Add one to the inverted result.

For example, to compute the eight-bit equivalent of -5:

%0000_0101 Five (in binary).
%1111_1010 Invert all the bits.
%1111_1011 Add one to obtain result.

 If we take minus five and perform the two’s complement operation on it, we get our original value,
%0000_0101, back again, just as we expect:

%1111_1011 Two’s complement for -5.
%0000_0100 Invert all the bits.
%0000_0101 Add one to obtain result (+5).

 The following examples provide some positive and negative 16-bit signed values:

$7FFF: +32767, the largest 16-bit positive number.

$8000: -32768, the smallest 16-bit negative number.

$4000: +16,384.

To convert the numbers above to their negative counterpart (i.e., to negate them), do the following:

$7FFF: %0111_1111_1111_1111 +32,767
%1000_0000_0000_0000 Invert all the bits (8000h)
%1000_0000_0000_0001 Add one (8001h or -32,767)

4000h: %0100_0000_0000_0000 16,384
%1011_1111_1111_1111 Invert all the bits ($BFFF)
%1100_0000_0000_0000 Add one ($C000 or -16,384)

$8000: %1000_0000_0000_0000 -32,768
%0111_1111_1111_1111 Invert all the bits ($7FFF)
%1000_0000_0000_0000 Add one (8000h or -32768)

$8000 inverted becomes $7FFF. After adding one we obtain $8000! Wait, what’s going on here?
-(-32,768) is -32,768? Of course not. But the value +32,768 cannot be represented with a 16-bit signed num-
ber, so we cannot negate the smallest negative value.

Why bother with such a miserable numbering system? Why not use the H.O. bit as a sign flag, storing
the positive equivalent of the number in the remaining bits? The answer lies in the hardware. As it turns out,
negating values is the only tedious job. With the two’s complement system, most other operations are as easy
as the binary system. For example, suppose you were to perform the addition 5+(-5). The result is zero. Con-
sider what happens when we add these two values in the two’s complement system:

 % 0000_0101
 % 1111_1011

%1_0000_0000
Page 60 © 1999, By Randall Hyde Beta Draft - Do not distribute

Data Representation
We end up with a carry into the ninth bit and all other bits are zero. As it turns out, if we ignore the carry out
of the H.O. bit, adding two signed values always produces the correct result when using the two’s comple-
ment numbering system. This means we can use the same hardware for signed and unsigned addition and
subtraction. This wouldn’t be the case with some other numbering systems.

Except for the questions at the end of this chapter, you will not need to perform the two’s complement
operation by hand. The 80x86 microprocessor provides an instruction, NEG (negate), which performs this
operation for you. Furthermore, all the hexadecimal calculators will perform this operation by pressing the
change sign key (+/- or CHS). Nevertheless, performing a two’s complement by hand is easy, and you
should know how to do it.

Once again, you should note that the data represented by a set of binary bits depends entirely on the con-
text. The eight bit binary value %1100_0000 could represent an IBM/ASCII character, it could represent the
unsigned decimal value 192, or it could represent the signed decimal value -64, etc. As the programmer, it is
your responsibility to use this data consistently.

The 80x86 negate instruction, NEG, uses the same syntax as the NOT instruction; that is, it takes a sin-
gle destination operand:

neg(dest);

This instruction computes “dest = -dest;” and the operand has the usual limitation (it must be a memory
location or a register). NEG operates on byte, word, and dword-sized objects. Of course, since this is a
signed integer operation, it only makes sense to operate on signed integer values. The following program
demonstrates the two’s complement operation by using the NEG instruction:

program twosComplement;
#include("stdlib.hhf");

static
 PosValue: int8;
 NegValue: int8;

begin twosComplement;

 stdout.put("Enter an integer between 0 and 127: ");
 stdin.get(PosValue);

 stdout.put(nl, "Value in hexadecimal: $");
 stdout.puth(PosValue);

 mov(PosValue, al);
 not(al);
 stdout.put(nl, "Invert all the bits: $", al, nl);
 add(1, al);
 stdout.put("Add one: $", al, nl);
 mov(al, NegValue);
 stdout.put("Result in decimal: ", NegValue, nl);

 stdout.put
 (
 nl,
 "Now do the same thing with the NEG instruction: ",
 nl
);
 mov(PosValue, al);
 neg(al);
 mov(al, NegValue);
 stdout.put("Hex result = $", al, nl);
Beta Draft - Do not distribute © 1999, By Randall Hyde Page 61

Chapter Three Volume 1
 stdout.put("Decimal result = ", NegValue, nl);

end twosComplement;

Program 3.6 The Two’s Complement Operation

As you saw in the previous chapters, you use the int8, int16, and int32 data types to reserve storage for
signed integer variables. Those chapters also introduced routines like stdout.puti8 and stdin.geti32 that read
and write signed integer values. Since this section has made it abundantly clear that you must differentiate
signed and unsigned calculations in your programs, you should probably be asking yourself about now
“how do I declare and use unsigned integer variables?”

The first part of the question, “how do you declare unsigned integer variables,” is the easiest to answer.
You simply use the uns8, uns16, and uns32 data types when declaring the variables, for example:

static
u8: uns8;
u16: uns16;
u32: uns32;

As for using these unsigned variables, the HLA Standard Library provides a complementary set of
input/output routines for reading and displaying unsigned variables. As you can probably guess, these rou-
tines include stdout.putu8, stdout.putu16, stdout.putu32, stdout.putu8size, stdout.putu16size, std-
out.putu32size, stdin.getu8, stdin.getu16, and stdin.getu32. You use these routines just as you would use
their signed integer counterparts except, of course, you get to use the full range of the unsigned values with
these routines. The following source code demonstrates unsigned I/O as well as demonstrating what can
happen if you mix signed and unsigned operations in the same calculation:

program unsExample;
#include("stdlib.hhf");

static
 UnsValue: uns16;

begin unsExample;

 stdout.put("Enter an integer between 32,768 and 65,535: ");
 stdin.getu16();
 mov(ax, UnsValue);

 stdout.put
 (
 "You entered ",
 UnsValue,
 ". If you treat this as a signed integer, it is "
);
 stdout.puti16(UnsValue);
 stdout.newln();

end unsExample;

Program 3.7 Unsigned I/O
Page 62 © 1999, By Randall Hyde Beta Draft - Do not distribute

Data Representation
3.10 Sign Extension, Zero Extension, Contraction, and Saturation

Since two’s complement format integers have a fixed length, a small problem develops. What happens if
you need to convert an eight bit two’s complement value to 16 bits? This problem, and its converse (convert-
ing a 16 bit value to eight bits) can be accomplished via sign extension and contraction operations. Likewise,
the 80x86 works with fixed length values, even when processing unsigned binary numbers. Zero extension
lets you convert small unsigned values to larger unsigned values.

Consider the value “-64”. The eight bit two’s complement value for this number is $C0. The 16-bit
equivalent of this number is $FFC0. Now consider the value “+64”. The eight and 16 bit versions of this
value are $40 and $0040, respectively. The difference between the eight and 16 bit numbers can be described
by the rule: “If the number is negative, the H.O. byte of the 16 bit number contains $FF; if the number is pos-
itive, the H.O. byte of the 16 bit quantity is zero.”

To sign extend a value from some number of bits to a greater number of bits is easy, just copy the sign
bit into all the additional bits in the new format. For example, to sign extend an eight bit number to a 16 bit
number, simply copy bit seven of the eight bit number into bits 8..15 of the 16 bit number. To sign extend a
16 bit number to a double word, simply copy bit 15 into bits 16..31 of the double word.

Sign extension is required when manipulating signed values of varying lengths. Often you’ll need to add
a byte quantity to a word quantity. You must sign extend the byte quantity to a word before the operation
takes place. Other operations (multiplication and division, in particular) may require a sign extension to
32-bits. You must not sign extend unsigned values.

Sign Extension:
Eight Bits Sixteen Bits Thirty-two Bits

 $80 $FF80 $FFFF_FF80
 $28 $0028 $0000_0028
 $9A $FF9A $FFFF_FF9A
 $7F $007F $0000_007F
 ––– $1020 $0000_1020
 ––– $8086 $FFFF_8086

To extend an unsigned byte you must zero extend the value. Zero extension is very easy – just store a
zero into the H.O. byte(s) of the larger operand. For example, to zero extend the value $82 to 16-bits you
simply add a zero to the H.O. byte yielding $0082.

Zero Extension:
Eight Bits Sixteen Bits Thirty-two Bits

 $80 $0080 $0000_0080
 $28 $0028 $0000_0028
 $9A $009A $0000_009A
 $7F $007F $0000_007F
 ––– $1020 $0000_1020
 ––– $8086 $0000_8086

Sign contraction, converting a value with some number of bits to the identical value with a fewer num-
ber of bits, is a little more troublesome. Sign extension never fails. Given an m-bit signed value you can
always convert it to an n-bit number (where n > m) using sign extension. Unfortunately, given an n-bit num-
ber, you cannot always convert it to an m-bit number if m < n. For example, consider the value -448. As a
16-bit hexadecimal number, its representation is $FE40. Unfortunately, the magnitude of this number is too
great to fit into an eight bit value, so you cannot sign contract it to eight bits. This is an example of an over-
flow condition that occurs upon conversion.

To properly sign contract one value to another, you must look at the H.O. byte(s) that you want to dis-
card. The H.O. bytes you wish to remove must all contain either zero or $FF. If you encounter any other val-
Beta Draft - Do not distribute © 1999, By Randall Hyde Page 63

Chapter Three Volume 1
ues, you cannot contract it without overflow. Finally, the H.O. bit of your resulting value must match every
bit you’ve removed from the number. Examples (16 bits to eight bits):

$FF80 can be sign contracted to $80.
$0040 can be sign contracted to $40.
$FE40 cannot be sign contracted to 8 bits.
$0100 cannot be sign contracted to 8 bits.

The 80x86 provides several instructions that will let you sign or zero extend a smaller number to a larger
number. The first group of instructions we will look at will sign extend the AL, AX, or EAX register. These
instructions are

• cbw(); // Converts the byte in AL to a word in AX via sign extension.
• cwd(); // Converts the word in AX to a double word in DX:AX
• cdq(); // Converts the double word in EAX to the quad word in EDX:EAX
• cwde(); // Converts the word in AX to a doubleword in EAX.

Note that the CWD (convert word to doubleword) instruction does not sign extend the word in AX to the
doubleword in EAX. Instead, it stores the H.O. doubleword of the sign extension into the DX register (the
notation “DX:AX” tells you that you have a double word value with DX containing the upper 16 bits and AX
containing the lower 16 bits of the value). If you want the sign extension of AX to go into EAX, you should
use the CWDE (convert word to doubleword, extended) instruction.

The four instructions above are unusual in the sense that these are the first instructions you’ve seen that
do not have any operands. These instructions’ operands are implied by the instructions themselves.

Within a few chapters you will discover just how important these instructions are, and why the CWD
and CDQ instructions involve the DX and EDX registers. However, for simple sign extension operations,
these instructions have a few major drawbacks - you do not get to specify the source and destination oper-
ands and the operands must be registers.

For general sign extension operations, the 80x86 provides an extension of the MOV instruction,
MOVSX (move with sign extension), that copies data and sign extends the data while copying it. The
MOVSX instruction’s syntax is very similar to the MOV instruction:

movsx(source, dest);

The big difference in syntax between this instruction and the MOV instruction is the fact that the destination
operand must be larger than the source operand. That is, if the source operand is a byte, the destination oper-
and must be a word or a double word. Likewise, if the source operand is a word, the destination operand
must be a double word. Another difference is that the destination operand has to be a register; the source
operand, however, can be a memory location4.

To zero extend a value, you can use the MOVZX instruction. It has the same syntax and restrictions as
the MOVSX instruction. Zero extending certain eight-bit registers (AL, BL, CL, and DL) into their corre-
sponding 16-bit registers is easily accomplished without using MOVZX by loading the complementary H.O.
register (AH, BH, CH, or DH) with zero. Obviously, to zero extend AX into DX:AX or EAX into
EDX:EAX, all you need to do is load DX or EDX with zero5.

The following sample program demonstrates the use of the sign extension instructions:

program signExtension;
#include("stdlib.hhf");

4. This doesn’t turn out to be much of a limitation because sign extension almost always precedes an arithmetic operation
which must take place in a register.
5. Zero extending into DX:AX or EDX:EAX is just as necessary as the CWD and CDQ instructions, as you will eventually
see.
Page 64 © 1999, By Randall Hyde Beta Draft - Do not distribute

Data Representation
static
 i8: int8;
 i16: int16;
 i32: int32;

begin signExtension;

 stdout.put("Enter a small negative number: ");
 stdin.get(i8);

 stdout.put(nl, "Sign extension using CBW and CWDE:", nl, nl);

 mov(i8, al);
 stdout.put("You entered ", i8, " ($", al, ")", nl);

 cbw();
 mov(ax, i16);
 stdout.put("16-bit sign extension: ", i16, " ($", ax, ")", nl);

 cwde();
 mov(eax, i32);
 stdout.put("32-bit sign extension: ", i32, " ($", eax, ")", nl);

 stdout.put(nl, "Sign extension using MOVSX:", nl, nl);

 movsx(i8, ax);
 mov(ax, i16);
 stdout.put("16-bit sign extension: ", i16, " ($", ax, ")", nl);

 movsx(i8, eax);
 mov(eax, i32);
 stdout.put("32-bit sign extension: ", i32, " ($", eax, ")", nl);

end signExtension;

Program 3.8 Sign Extension Instructions

Another way to reduce the size of an integer is through saturation. Saturation is useful in situations
where you must convert a larger object to a smaller object and you’re willing to live with possible loss of
precision. To convert a value via saturation you simply copy the larger value to the smaller value if it is not
outside the range of the smaller object. If the larger value is outside the range of the smaller value, then you
clip the value by setting it to the largest (or smallest) value within the range of the smaller object.

For example, when converting a 16-bit signed integer to an eight-bit signed integer, if the 16-bit value is
in the range -128..+127 you simply copy the L.O. byte of the 16-bit object to the eight-bit object. If the
16-bit signed value is greater than +127, then you clip the value to +127 and store +127 into the eight-bit
object. Likewise, if the value is less than -128, you clip the final eight bit object to -128. Saturation works
the same way when clipping 32-bit values to smaller values. If the larger value is outside the range of the
smaller value, then you simply set the smaller value to the value closest to the out of range value that you can
represent with the smaller value.

Obviously, if the larger value is outside the range of the smaller value, then there will be a loss of preci-
sion during the conversion. While clipping the value to the limits the smaller object imposes is never desir-
able, sometimes this is acceptable as the alternative is to raise an exception or otherwise reject the
calculation. For many applications, such as audio or video processing, the clipped result is still recogniz-
able, so this is a reasonable conversion to use.
Beta Draft - Do not distribute © 1999, By Randall Hyde Page 65

Chapter Three Volume 1
3.11 Shifts and Rotates

Another set of logical operations which apply to bit strings are the shift and rotate operations. These two
categories can be further broken down into left shifts, left rotates, right shifts, and right rotates. These opera-
tions turn out to be extremely useful to assembly language programmers.

The left shift operation moves each bit in a bit string one position to the left (see Figure 3.8).

Figure 3.8 Shift Left Operation

Bit zero moves into bit position one, the previous value in bit position one moves into bit position two,
etc. There are, of course, two questions that naturally arise: “What goes into bit zero?” and “Where does bit
seven wind up?” We’ll shift a zero into bit zero and the previous value of bit seven will be the carry out of
this operation.

The 80x86 provides a shift left instruction, SHL, that performs this useful operation. The syntax for the
SHL instruction is the following:

shl(count, dest);

The count operand is either “CL” or a constant in the range 0..n, where n is one less than the number of bits
in the destination operand (i.e., n=7 for eight-bit operands, n=15 for 16-bit operands, and n=31 for 32-bit
operands). The dest operand is a typical dest operand, it can be either a memory location or a register.

When the count operand is the constant one, the SHL instruction does the following:

Figure 3.9 Operation of the SHL(1, Dest) Instruction

In Figure 3.9, the “C” represents the carry flag. That is, the bit shifted out of the H.O. bit of the operand
is moved into the carry flag. Therefore, you can test for overflow after a SHL(1, dest) instruction by testing
the carry flag immediately after executing the instruction (e.g., by using “if(@c) then...” or
“if(@nc) then...”).

Intel’s literature suggests that the state of the carry flag is undefined if the shift count is a value other
than one. Usually, the carry flag contains the last bit shifted out of the destination operand, but Intel doesn’t
seem to guarantee this. If you need to shift more than one bit out of an operand and you need to capture all
the bits you shift out, you should take a look at the SHLD and SHRD instructions in the appendicies.

Note that shifting a value to the left is the same thing as multiplying it by its radix. For example, shifting
a decimal number one position to the left (adding a zero to the right of the number) effectively multiplies it
by ten (the radix):

1234 shl 1 = 12340 (shl 1 means shift one position to the left)

7 6 5 4 3 2 1 0

H.O Bit 4 3 2 1 0
0...C
Page 66 © 1999, By Randall Hyde Beta Draft - Do not distribute

Data Representation
Since the radix of a binary number is two, shifting it left multiplies it by two. If you shift a binary value to
the left twice, you multiply it by two twice (i.e., you multiply it by four). If you shift a binary value to the left
three times, you multiply it by eight (2*2*2). In general, if you shift a value to the left n times, you multiply
that value by 2n.

A right shift operation works the same way, except we’re moving the data in the opposite direction. Bit
seven moves into bit six, bit six moves into bit five, bit five moves into bit four, etc. During a right shift, we’ll
move a zero into bit seven, and bit zero will be the carry out of the operation (see Figure 3.10).

Figure 3.10 Shift Right Operation

As you would probably expect by now, the 80x86 provides a SHR instruction that will shift the bits to
the right in a destination operand. The syntax is the same as the SHL instruction except, of course, you spec-
ify SHR rather than SHL:

SHR(count, dest);

This instruction shifts a zero into the H.O. bit of the destination operand, it shifts all the other bits one place
to the right (that is, from a higher bit number to a lower bit number). Finally, bit zero is shifted into the carry
flag. If you specify a count of one, the SHR instruction does the following:

Figure 3.11 SHR(1, Dest) Operation

Once again, Intel’s documents suggest that shifts of more than one bit leave the carry in an undefined
state.

Since a left shift is equivalent to a multiplication by two, it should come as no surprise that a right shift
is roughly comparable to a division by two (or, in general, a division by the radix of the number). If you per-
form n right shifts, you will divide that number by 2n.

There is one problem with shift rights with respect to division: as described above a shift right is only
equivalent to an unsigned division by two. For example, if you shift the unsigned representation of 254
(0FEh) one place to the right, you get 127 (07Fh), exactly what you would expect. However, if you shift the
binary representation of -2 (0FEh) to the right one position, you get 127 (07Fh), which is not correct. This
problem occurs because we’re shifting a zero into bit seven. If bit seven previously contained a one, we’re
changing it from a negative to a positive number. Not a good thing when dividing by two.

To use the shift right as a division operator, we must define a third shift operation: arithmetic shift
right6. An arithmetic shift right works just like the normal shift right operation (a logical shift right) with one
exception: instead of shifting a zero into bit seven, an arithmetic shift right operation leaves bit seven alone,
that is, during the shift operation it does not modify the value of bit seven as Figure 3.12 shows.

7 6 5 4 3 2 1 0

0 C

...
H.O Bit 5 4 3 2 1 0

C0
Beta Draft - Do not distribute © 1999, By Randall Hyde Page 67

Chapter Three Volume 1
Figure 3.12 Arithmetic Shift Right Operation

This generally produces the result you expect. For example, if you perform the arithmetic shift right opera-
tion on -2 (0FEh) you get -1 (0FFh). Keep one thing in mind about arithmetic shift right, however. This oper-
ation always rounds the numbers to the closest integer which is less than or equal to the actual result. Based
on experiences with high level programming languages and the standard rules of integer truncation, most
people assume this means that a division always truncates towards zero. But this simply isn’t the case. For
example, if you apply the arithmetic shift right operation on -1 (0FFh), the result is -1, not zero. -1 is less
than zero so the arithmetic shift right operation rounds towards minus one. This is not a “bug” in the arith-
metic shift right operation, it’s just uses a diffferent (though valid) definition of division.

The 80x86 provides an arithmetic shift right instruction, SAR (shift arithmetic right). This instruction’s
syntax is nearly identical to SHL and SHR. The syntax is

SAR(count, dest);

The usual limitations on the count and destination operands apply. This instruction does the following if the
count is one:

Figure 3.13 SAR(1, dest) Operation

Another pair of useful operations are rotate left and rotate right. These operations behave like the shift
left and shift right operations with one major difference: the bit shifted out from one end is shifted back in at
the other end.

Figure 3.14 Rotate Left Operation

6. There is no need for an arithmetic shift left. The standard shift left operation works for both signed and unsigned numbers,
assuming no overflow occurs.

7 6 5 4 3 2 1 0

...
H.O Bit 5 4 3 2 1 0

C

7 6 5 4 3 2 1 0
Page 68 © 1999, By Randall Hyde Beta Draft - Do not distribute

Data Representation
Figure 3.15 Rotate Right Operation

The 80x86 provides ROL (rotate left) and ROR (rotate right) instructions that do these basic operations
on their operands. The syntax for these two instructions is similar to the shift instructions:

rol(count, dest);
ror(count, dest);

Once again, this instructions provide a special behavior if the shift count is one. Under this condition
these two instructions also copy the bit shifted out of the destination operand into the carry flag as the fol-
lowing two figures show:

Figure 3.16 ROL(1, Dest) Operation

Figure 3.17 ROR(1, Dest) Operation

It will turn out that it is often more convenient for the rotate operation to shift the output bit through the
carry and shift the previous carry value back into the input bit of the shift operation. The 80x86 RCL (rotate
through carry left) and RCR (rotate through carry right) instructions achieve this for you. These instructions
use the following syntax:

RCL(count, dest);
RCR(count, dest);

7 6 5 4 3 2 1 0

H.O Bit 5 4 3 2 1 0

C

...

H.O. Bit 5 4 3 2 1 0

C

...
Beta Draft - Do not distribute © 1999, By Randall Hyde Page 69

Chapter Three Volume 1
As for the other shift and rotate instructions, the count operand is either a constant or the CL register and
the destination operand is a memory location or register. The count operand must be a value that is less than
the number of bits in the destination operand. For a count value of one, these two instructions do the follow-
ing:

Figure 3.18 RCL(1, Dest) Operation

Figure 3.19 RCR(1, Dest) Operation

3.12 Bit Fields and Packed Data

Although the 80x86 operates most efficiently on byte, word, and double word data types, occasionally
you’ll need to work with a data type that uses some number of bits other than eight, 16, or 32. For example,
consider a date of the form “04/02/01”. It takes three numeric values to represent this date: a month, day, and
year value. Months, of course, take on the values 1..12. It will require at least four bits (maximum of sixteen
different values) to represent the month. Days range between 1..31. So it will take five bits (maximum of 32
different values) to represent the day entry. The year value, assuming that we’re working with values in the
range 0..99, requires seven bits (which can be used to represent up to 128 different values). Four plus five
plus seven is 16 bits, or two bytes. In other words, we can pack our date data into two bytes rather than the
three that would be required if we used a separate byte for each of the month, day, and year values. This
saves one byte of memory for each date stored, which could be a substantial saving if you need to store a lot
of dates. The bits could be arranged as shown in the following figure:

H.O Bit 5 4 3 2 1 0

C

...

H.O. Bit 5 4 3 2 1 0

C

...
Page 70 © 1999, By Randall Hyde Beta Draft - Do not distribute

Data Representation
Figure 3.20 Short Packed Date Format (Two Bytes)

MMMM represents the four bits making up the month value, DDDDD represents the five bits making
up the day, and YYYYYYY is the seven bits comprising the year. Each collection of bits representing a data
item is a bit field. April 2nd, 2001 would be represented as $4101:

0100 00010 0000001 = %0100_0001_0000_0001 or $4101
 4 2 01

Although packed values are space efficient (that is, very efficient in terms of memory usage), they are
computationally inefficient (slow!). The reason? It takes extra instructions to unpack the data packed into the
various bit fields. These extra instructions take additional time to execute (and additional bytes to hold the
instructions); hence, you must carefully consider whether packed data fields will save you anything. The
following sample program demonstrates the effort that must go into packing and unpacking this 16-bit date
format:

program dateDemo;

#include("stdlib.hhf");

static
 day: uns8;
 month: uns8;
 year: uns8;

 packedDate: word;

begin dateDemo;

 stdout.put("Enter the current month, day, and year: ");
 stdin.get(month, day, year);

 // Pack the data into the following bits:
 //
 // 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 // m m m m d d d d d y y y y y y y

 mov(0, ax);
 mov(ax, packedDate); //Just in case there is an error.
 if(month > 12) then

 stdout.put("Month value is too large", nl);

 elseif(month = 0) then

 stdout.put("Month value must be in the range 1..12", nl);

 elseif(day > 31) then

 stdout.put("Day value is too large", nl);

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

M M M M D D D D D Y Y Y Y Y Y Y
Beta Draft - Do not distribute © 1999, By Randall Hyde Page 71

Chapter Three Volume 1

 elseif(day = 0) then

 stdout.put("Day value must be in the range 1..31", nl);

 elseif(year > 99) then

 stdout.put("Year value must be in the range 0..99", nl);

 else

 mov(month, al);
 shl(5, ax);
 or(day, al);
 shl(7, ax);
 or(year, al);
 mov(ax, packedDate);

 endif;

 // Okay, display the packed value:

 stdout.put("Packed data = $", packedDate, nl);

 // Unpack the date:

 mov(packedDate, ax);
 and($7f, al); // Retrieve the year value.
 mov(al, year);

 mov(packedDate, ax); // Retrieve the day value.
 shr(7, ax);
 and(%1_1111, al);
 mov(al, day);

 mov(packedDate, ax); // Retrive the month value.
 rol(4, ax);
 and(%1111, al);
 mov(al, month);

 stdout.put("The date is ", month, "/", day, "/", year, nl);

end dateDemo;

Program 3.9 Packing and Unpacking Date Data

Of course, having gone through the problems with Y2K, using a date format that limits you to 100 years
(or even 127 years) would be quite foolish at this time. If you’re concerned about your software running 100
years from now, perhaps it would be wise to use a three-byte date format rather than a two-byte format. As
you will see in the chapter on arrays, however, you should always try to create data objects whose length is
an even power of two (one byte, two bytes, four bytes, eight bytes, etc.) or you will pay a performance pen-
alty. Hence, it is probably wise to go ahead an use four bytes and pack this data into a dword variable. Fig-
ure 3.21 shows a possible data organization for a four-byte date.
Page 72 © 1999, By Randall Hyde Beta Draft - Do not distribute

Data Representation
Figure 3.21 Long Packed Date Format (Four Bytes)

In this long packed data format several changes were made beyond simply extending the number of bits
associated with the year. First, since there are lots of extra bits in a 32-bit dword variable, this format allots
extra bits to the month and day fields. Since these two fields consist of eight bits each, they can be easily
extracted as a byte object from the dword. This leaves fewer bits for the year, but 65,536 years is probably
sufficient; you can probably assume without too much concern that your software will not still be in use 63
thousand years from now when this date format will wrap around.

Of course, you could argue that this is no longer a packed date format. After all, we needed three
numeric values, two of which fit just nicely into one byte each and one that should probably have at least two
bytes. Since this “packed” date format consumes the same four bytes as the unpacked version, what is so
special about this format? Well, another difference you will note between this long packed date format and
the short date format appearing in Figure 3.20 is the fact that this long date format rearranges the bits so the
Year is in the H.O. bit positions, the Month field is in the middle bit positions, and the Day field is in the L.O.
bit positions. This is important because it allows you to very easily compare two dates to see if one date is
less than, equal to, or greater than another date. Consider the following code:

mov(Date1, eax); // Assume Date1 and Date2 are dword variables
if(eax > Date2) then // using the Long Packed Date format.

<< do something if Date1 > Date2 >>

endif;

Had you kept the different date fields in separate variables, or organized the fields differently, you would not
have been able to compare Date1 and Date2 in such a straight-forward fashion. Therefore, this example
demonstrates another reason for packing data even if you don’t realize any space savings- it can make certain
computations more convenient or even more efficient (contrary to what normally happens when you pack
data).

Examples of practical packed data types abound. You could pack eight boolean values into a single byte,
you could pack two BCD digits into a byte, etc. Of course, a classic example of packed data is the FLAGs
register (see Figure 3.22). This register packs nine important boolean objects (along with seven important
system flags) into a single 16-bit register. You will commonly need to access many of these flags. For this
reason, the 80x86 instruction set provides many ways to manipulate the individual bits in the FLAGs regis-
ter. Of course, you can test many of the condition code flags using the HLA @c, @nc, @z, @nz, etc.,
pseudo-boolean variables in an IF statement or other statement using a boolean expression.

In addition to the condition codes, the 80x86 provides instructions that directly affect certain flags.
These instructions include the following:

• cld(); Clears (sets to zero) the direction flag.
• std(); Sets (to one) the direction flag.
• cli(); Clears the interrupt disable flag.
• sti(); Sets the interrupt disable flag.
• clc(); Clears the carry flag.
• stc(); Sets the carry flag.
• cmc(); Complements (inverts) the carry flag.
• sahf(); Stores the AH register into the L.O. eight bits of the FLAGs register.
• lahf(); Loads AH from the L.O. eight bits of the FLAGs register.

151631 8 7 0

Month (1-12)Year (0-65535) Day (1-31)
Beta Draft - Do not distribute © 1999, By Randall Hyde Page 73

Chapter Three Volume 1
There are other instructions that affect the FLAGs register as well; these, however, demonstrate how to
access several of the packed boolean values in the FLAGs register. The LAHF and SAHF instructions, in
particular, provide a convenient way to access the L.O. eight bits of the FLAGs register as an eight-bit byte
(rather than as eight separate one-bit values).

Figure 3.22 The FLAGs Register as a Packed Data Type

The LAHF (load AH with the L.O. eight bits of the FLAGs register) and the SAHF (store AH into the
L.O. byte of the FLAGs register) use the following syntax:

lahf();
sahf();

3.13 Putting It All Together

In this chapter you’ve seen how we represent numeric values inside the computer. You’ve seen how to
represent values using the decimal, binary, and hexadecimal numbering systems as well as the difference
between signed and unsigned numeric representation. Since we represent nearly everything else inside a
computer using numeric values, the material in this chapter is very important. Along with the base represen-
tation of numeric values, this chapter discusses the finite bit-string organization of data on typical computer
systems, specfically bytes, words, and doublewords. Next, this chapter discusses arithmetic and logical
operations on the numbers and presents some new 80x86 instructions to apply these operations to values
inside the CPU. Finally, this chapter concludes by showing how you can pack several different numeric val-
ues into a fixed-length object (like a byte, word, or doubleword).

Absent from this chapter is any discussion of non-integer data. For example, how do we represent real
numbers as well as integers? How do we represent characters, strings, and other non-numeric data? Well,
that’s the subject of the next chapter, so keep in reading...

Overflow
Direction
Interrupt
Trace
Sign
Zero

Auxiliary Carry

Parity

Carry

Reserved
for System
Purposes
Page 74 © 1999, By Randall Hyde Beta Draft - Do not distribute

Data Representation
More Data Representation Chapter Four

4.1 Chapter Overview

Although the basic machine data objects (bytes, words, and double words) appear to represent nothing
more than signed or unsigned numeric values, we can employ these data types to represent many other types
of objects. This chapter discusses some of the other objects and their internal computer representation.

This chapter begins by discussing floating point (real) numeric format. After integer representation,
floating point representation is the second most popular numeric format in use on modern computer sys-
tems1. Although the floating point format is somewhat complex, the necessity to handle non-integer calcu-
lations in modern programs requires that you understand this numeric format and its limitations.

Binary Coded Decimal (BCD) is another numeric data representation that is useful in certain contexts.
Although BCD is not suitable for general purpose arithmetic, it is useful in some embedded applications.
The principle benefit of the BCD format is the ease with which you can convert between string and BCD for-
mat. When we look at the BCD format a little later in this chapter, you’ll see why this is the case.

Computers can represent all kinds of different objects, not just numeric values. Characters are, unques-
tionably, one of the more popular data types a computer manipulates. In this chapter you will take a look at
a couple of different ways we can represent individual characters on a computer system. This chapter dis-
cusses two of the more common character sets in use today: the ASCII character set and the Unicode charac-
ter set.

This chapter concludes by discussing some common non-numeric data types like pixel colors on a video
display, audio data, video data, and so on. Of course, there are lots of different representations for any kind
of standard data you could envision; there is no way two chapters in a textbook can cover them all. (And
that’s not even considering specialized data types you could create). Nevertheless, this chapter (and the last)
should give you the basic idea behind representing data on a computer system.

4.2 An Introduction to Floating Point Arithmetic

Integer arithmetic does not let you represent fractional numeric values. Therefore, modern CPUs sup-
port an approximation of real arithmetic: floating point arithmetic. A big problem with floating point arith-
metic is that it does not follow the standard rules of algebra. Nevertheless, many programmers apply normal
algebraic rules when using floating point arithmetic. This is a source of defects in many programs. One of
the primary goals of this section is to describe the limitations of floating point arithmetic so you will under-
stand how to use it properly.

Normal algebraic rules apply only to infinite precision arithmetic. Consider the simple statement
“x:=x+1,” x is an integer. On any modern computer this statement follows the normal rules of algebra as
long as overflow does not occur. That is, this statement is valid only for certain values of x
(minint <= x < maxint). Most programmers do not have a problem with this because they are well aware of
the fact that integers in a program do not follow the standard algebraic rules (e.g., 5/2 ≠ 2.5).

Integers do not follow the standard rules of algebra because the computer represents them with a finite
number of bits. You cannot represent any of the (integer) values above the maximum integer or below the
minimum integer. Floating point values suffer from this same problem, only worse. After all, the integers are
a subset of the real numbers. Therefore, the floating point values must represent the same infinite set of inte-
gers. However, there are an infinite number of values between any two real values, so this problem is infi-
nitely worse. Therefore, as well as having to limit your values between a maximum and minimum range, you
cannot represent all the values between those two ranges, either.

1. There are other numeric formats, such as fixed point formats and binary coded decimal format.
Beta Draft - Do not distribute © 2000, By Randall Hyde Page 75

Chapter Four Volume One
To represent real numbers, most floating point formats employ scientific notation and use some number
of bits to represent a mantissa and a smaller number of bits to represent an exponent. The end result is that
floating point numbers can only represent numbers with a specific number of significant digits. This has a
big impact on how floating point arithmetic operates. To easily see the impact of limited precision arith-
metic, we will adopt a simplified decimal floating point format for our examples. Our floating point format
will provide a mantissa with three significant digits and a decimal exponent with two digits. The mantissa
and exponents are both signed values as shown in Figure 4.1

Figure 4.1 Simple Floating Point Format

When adding and subtracting two numbers in scientific notation, you must adjust the two values so that
their exponents are the same. For example, when adding 1.23e1 and 4.56e0, you must adjust the values so
they have the same exponent. One way to do this is to convert 4.56e0 to 0.456e1 and then add. This produces
1.686e1. Unfortunately, the result does not fit into three significant digits, so we must either round or trun-
cate the result to three significant digits. Rounding generally produces the most accurate result, so let’s
round the result to obtain 1.69e1. As you can see, the lack of precision (the number of digits or bits we main-
tain in a computation) affects the accuracy (the correctness of the computation).

In the previous example, we were able to round the result because we maintained four significant digits
during the calculation. If our floating point calculation is limited to three significant digits during computa-
tion, we would have had to truncate the last digit of the smaller number, obtaining 1.68e1 which is even less
correct. To improve the accuracy of floating point calculations, it is necessary to add extra digits for use dur-
ing the calculation. Extra digits available during a computation are known as guard digits (or guard bits in
the case of a binary format). They greatly enhance accuracy during a long chain of computations.

The accuracy loss during a single computation usually isn’t enough to worry about unless you are
greatly concerned about the accuracy of your computations. However, if you compute a value which is the
result of a sequence of floating point operations, the error can accumulate and greatly affect the computa-
tion itself. For example, suppose we were to add 1.23e3 with 1.00e0. Adjusting the numbers so their expo-
nents are the same before the addition produces 1.23e3 + 0.001e3. The sum of these two values, even after
rounding, is 1.23e3. This might seem perfectly reasonable to you; after all, we can only maintain three sig-
nificant digits, adding in a small value shouldn’t affect the result at all. However, suppose we were to add
1.00e0 to 1.23e3 ten times. The first time we add 1.00e0 to 1.23e3 we get 1.23e3. Likewise, we get this same
result the second, third, fourth, ..., and tenth time we add 1.00e0 to 1.23e3. On the other hand, had we added
1.00e0 to itself ten times, then added the result (1.00e1) to 1.23e3, we would have gotten a different result,
1.24e3. This is an important thing to know about limited precision arithmetic:

❏ The order of evaluation can effect the accuracy of the result.

You will get more accurate results if the relative magnitudes (that is, the exponents) are close to one
another. If you are performing a chain calculation involving addition and subtraction, you should attempt to
group the values appropriately.

Another problem with addition and subtraction is that you can wind up with false precision. Consider
the computation 1.23e0 - 1.22 e0. This produces 0.01e0. Although this is mathematically equivalent to
1.00e-2, this latter form suggests that the last two digits are exactly zero. Unfortunately, we’ve only got a
single significant digit at this time. Indeed, some FPUs or floating point software packages might actually
insert random digits (or bits) into the L.O. positions. This brings up a second important rule concerning lim-
ited precision arithmetic:

❏ Whenever subtracting two numbers with the same signs or adding two numbers with
different signs, the accuracy of the result may be less than the precision available in
the floating point format.

e±±
Page 76 © 2000, By Randall Hyde Beta Draft - Do not distribute

Data Representation
Multiplication and division do not suffer from the same problems as addition and subtraction since you
do not have to adjust the exponents before the operation; all you need to do is add the exponents and multi-
ply the mantissas (or subtract the exponents and divide the mantissas). By themselves, multiplication and
division do not produce particularly poor results. However, they tend to multiply any error that already exists
in a value. For example, if you multiply 1.23e0 by two, when you should be multiplying 1.24e0 by two, the
result is even less accurate. This brings up a third important rule when working with limited precision arith-
metic:

❏ When performing a chain of calculations involving addition, subtraction, multiplica-
tion, and division, try to perform the multiplication and division operations first.

Often, by applying normal algebraic transformations, you can arrange a calculation so the multiply and
divide operations occur first. For example, suppose you want to compute x*(y+z). Normally you would add
y and z together and multiply their sum by x. However, you will get a little more accuracy if you transform
x*(y+z) to get x*y+x*z and compute the result by performing the multiplications first.

Multiplication and division are not without their own problems. When multiplying two very large or
very small numbers, it is quite possible for overflow or underflow to occur. The same situation occurs when
dividing a small number by a large number or dividing a large number by a small number. This brings up a
fourth rule you should attempt to follow when multiplying or dividing values:

❏ When multiplying and dividing sets of numbers, try to arrange the multiplications so
that they multiply large and small numbers together; likewise, try to divide numbers
that have the same relative magnitudes.

Comparing floating point numbers is very dangerous. Given the inaccuracies present in any computa-
tion (including converting an input string to a floating point value), you should never compare two floating
point values to see if they are equal. In a binary floating point format, different computations which produce
the same (mathematical) result may differ in their least significant bits. For example, adding 1.31e0+1.69e0
should produce 3.00e0. Likewise, adding 1.50e0+1.50e0 should produce 3.00e0. However, were you to
compare (1.31e0+1.69e0) against (1.50e0+1.50e0) you might find out that these sums are not equal to one
another. The test for equality succeeds if and only if all bits (or digits) in the two operands are exactly the
same. Since this is not necessarily true after two different floating point computations which should produce
the same result, a straight test for equality may not work.

The standard way to test for equality between floating point numbers is to determine how much error (or
tolerance) you will allow in a comparison and check to see if one value is within this error range of the other.
The straight-forward way to do this is to use a test like the following:

if Value1 >= (Value2-error) and Value1 <= (Value2+error) then …

Another common way to handle this same comparison is to use a statement of the form:

if abs(Value1-Value2) <= error then …

Most texts, when discussing floating point comparisons, stop immediately after discussing the problem
with floating point equality, assuming that other forms of comparison are perfectly okay with floating point
numbers. This isn’t true! If we are assuming that x=y if x is within y±error, then a simple bitwise comparison
of x and y will claim that x<y if y is greater than x but less than y+error. However, in such a case x should
really be treated as equal to y, not less than y. Therefore, we must always compare two floating point num-
bers using ranges, regardless of the actual comparison we want to perform. Trying to compare two floating
point numbers directly can lead to an error. To compare two floating point numbers, x and y, against one
another, you should use one of the following forms:

= if abs(x-y) <= error then …
≠ if abs(x-y) > error then …
< if (x-y) < error then …
≤ if (x-y) <= error then …
> if (x-y) > error then …
≥ if (x-y) >= error then …
Beta Draft - Do not distribute © 2000, By Randall Hyde Page 77

Chapter Four Volume One
You must exercise care when choosing the value for error. This should be a value slightly greater than
the largest amount of error which will creep into your computations. The exact value will depend upon the
particular floating point format you use, but more on that a little later. The final rule we will state in this sec-
tion is

❏ When comparing two floating point numbers, always compare one value to see if it is
in the range given by the second value plus or minus some small error value.

There are many other little problems that can occur when using floating point values. This text can only
point out some of the major problems and make you aware of the fact that you cannot treat floating point
arithmetic like real arithmetic – the inaccuracies present in limited precision arithmetic can get you into trou-
ble if you are not careful. A good text on numerical analysis or even scientific computing can help fill in the
details that are beyond the scope of this text. If you are going to be working with floating point arithmetic, in
any language, you should take the time to study the effects of limited precision arithmetic on your computa-
tions.

HLA’s IF statement does not support boolean expressions involving floating point operands. Therefore,
you cannot use statements like “IF(x < 3.141) THEN...” in your programs. In a later chapter that discussing
floating point operations on the 80x86 you’ll learn how to do floating point comparisons.

4.2.1 IEEE Floating Point Formats

When Intel planned to introduce a floating point coprocessor for their new 8086 microprocessor, they
were smart enough to realize that the electrical engineers and solid-state physicists who design chips were,
perhaps, not the best people to do the necessary numerical analysis to pick the best possible binary represen-
tation for a floating point format. So Intel went out and hired the best numerical analyst they could find to
design a floating point format for their 8087 FPU. That person then hired two other experts in the field and
the three of them (Kahn, Coonan, and Stone) designed Intel’s floating point format. They did such a good job
designing the KCS Floating Point Standard that the IEEE organization adopted this format for the IEEE
floating point format2.

To handle a wide range of performance and accuracy requirements, Intel actually introduced three float-
ing point formats: single precision, double precision, and extended precision. The single and double preci-
sion formats corresponded to C’s float and double types or FORTRAN’s real and double precision types.
Intel intended to use extended precision for long chains of computations. Extended precision contains 16
extra bits that the calculations could use as guard bits before rounding down to a double precision value
when storing the result.

The single precision format uses a one’s complement 24 bit mantissa and an eight bit excess-127 expo-
nent. The mantissa usually represents a value between 1.0 to just under 2.0. The H.O. bit of the mantissa is
always assumed to be one and represents a value just to the left of the binary point3. The remaining 23 man-
tissa bits appear to the right of the binary point. Therefore, the mantissa represents the value:

1.mmmmmmm mmmmmmmm mmmmmmmm

The “mmmm…” characters represent the 23 bits of the mantissa. Keep in mind that we are working with
binary numbers here. Therefore, each position to the right of the binary point represents a value (zero or one)
times a successive negative power of two. The implied one bit is always multiplied by 20, which is one. This
is why the mantissa is always greater than or equal to one. Even if the other mantissa bits are all zero, the
implied one bit always gives us the value one4. Of course, even if we had an almost infinite number of one
bits after the binary point, they still would not add up to two. This is why the mantissa can represent values
in the range one to just under two.

2. There were some minor changes to the way certain degenerate operations were handled, but the bit representation remained
essentially unchanged.
3. The binary point is the same thing as the decimal point except it appears in binary numbers rather than decimal numbers.
4. Actually, this isn’t necessarily true. The IEEE floating point format supports denormalized values where the H.O. bit is not
zero. However, we will ignore denormalized values in our discussion.
Page 78 © 2000, By Randall Hyde Beta Draft - Do not distribute

Data Representation
Although there are an infinite number of values between one and two, we can only represent eight mil-
lion of them because we use a 23 bit mantissa (the 24th bit is always one). This is the reason for inaccuracy
in floating point arithmetic – we are limited to 23 bits of precision in computations involving single precision
floating point values.

The mantissa uses a one’s complement format rather than two’s complement. This means that the 24 bit
value of the mantissa is simply an unsigned binary number and the sign bit determines whether that value is
positive or negative. One’s complement numbers have the unusual property that there are two representa-
tions for zero (with the sign bit set or clear). Generally, this is important only to the person designing the
floating point software or hardware system. We will assume that the value zero always has the sign bit clear.

To represent values outside the range 1.0 to just under 2.0, the exponent portion of the floating point for-
mat comes into play. The floating point format raise two to the power specified by the exponent and then
multiplies the mantissa by this value. The exponent is eight bits and is stored in an excess-127 format. In
excess-127 format, the exponent 20 is represented by the value 127 ($7f). Therefore, to convert an exponent
to excess-127 format simply add 127 to the exponent value. The use of excess-127 format makes it easier to
compare floating point values. The single precision floating point format takes the form shown in Figure 4.2.

Figure 4.2 Single Precision (32-bit) Floating Point Format

With a 24 bit mantissa, you will get approximately 6-1/2 digits of precision (one half digit of precision
means that the first six digits can all be in the range 0..9 but the seventh digit can only be in the range 0..x
where x<9 and is generally close to five). With an eight bit excess-127 exponent, the dynamic range of single
precision floating point numbers is approximately 2±128 or about 10±38.

Although single precision floating point numbers are perfectly suitable for many applications, the
dynamic range is somewhat limited for many scientific applications and the very limited precision is unsuit-
able for many financial, scientific, and other applications. Furthermore, in long chains of computations, the
limited precision of the single precision format may introduce serious error.

The double precision format helps overcome the problems of single precision floating point. Using
twice the space, the double precision format has an 11-bit excess-1023 exponent and a 53 bit mantissa (with
an implied H.O. bit of one) plus a sign bit. This provides a dynamic range of about 10±308and 14-1/2 digits of
precision, sufficient for most applications. Double precision floating point values take the form shown in
Figure 4.3.

Figure 4.3 64-Bit Double Precision Floating Point Format

31 23 15 7 0

Mantissa BitsExponent Bi tsSign
Bi t

1

The 24th mantissa bit is
implied and is always one.

 63 52 7 0

Mantissa BitsExponent BitsSign
Bit

1

The 53rd mantissa bit is
implied and is always one.

……
Beta Draft - Do not distribute © 2000, By Randall Hyde Page 79

Chapter Four Volume One
In order to help ensure accuracy during long chains of computations involving double precision floating
point numbers, Intel designed the extended precision format. The extended precision format uses 80 bits.
Twelve of the additional 16 bits are appended to the mantissa, four of the additional bits are appended to the
end of the exponent. Unlike the single and double precision values, the extended precision format’s mantissa
does not have an implied H.O. bit which is always one. Therefore, the extended precision format provides a
64 bit mantissa, a 15 bit excess-16383 exponent, and a one bit sign. The format for the extended precision
floating point value is shown in Figure 4.4:

Figure 4.4 80-bit Extended Precision Floating Point Format

On the FPUs all computations are done using the extended precision form. Whenever you load a single
or double precision value, the FPU automatically converts it to an extended precision value. Likewise, when
you store a single or double precision value to memory, the FPU automatically rounds the value down to the
appropriate size before storing it. By always working with the extended precision format, Intel guarantees a
large number of guard bits are present to ensure the accuracy of your computations. Some texts erroneously
claim that you should never use the extended precision format in your own programs, because Intel only
guarantees accurate computations when using the single or double precision formats. This is foolish. By per-
forming all computations using 80 bits, Intel helps ensure (but not guarantee) that you will get full 32 or 64
bit accuracy in your computations. Since the FPUs do not provide a large number of guard bits in 80 bit
computations, some error will inevitably creep into the L.O. bits of an extended precision computation.
However, if your computation is correct to 64 bits, the 80 bit computation will always provide at least 64
accurate bits. Most of the time you will get even more. While you cannot assume that you get an accurate 80
bit computation, you can usually do better than 64 when using the extended precision format.

To maintain maximum precision during computation, most computations use normalized values. A nor-
malized floating point value is one that has a H.O. mantissa bit equal to one. Almost any non-normalized
value can be normalized by shifting the mantissa bits to the left and decrementing the exponent by one until
a one appears in the H.O. bit of the mantissa. Remember, the exponent is a binary exponent. Each time you
increment the exponent, you multiply the floating point value by two. Likewise, whenever you decrement
the exponent, you divide the floating point value by two. By the same token, shifting the mantissa to the left
one bit position multiplies the floating point value by two; likewise, shifting the mantissa to the right divides
the floating point value by two. Therefore, shifting the mantissa to the left one position and decrementing
the exponent does not change the value of the floating point number at all.

Keeping floating point numbers normalized is beneficial because it maintains the maximum number of
bits of precision for a computation. If the H.O. bits of the mantissa are all zero, the mantissa has that many
fewer bits of precision available for computation. Therefore, a floating point computation will be more accu-
rate if it involves only normalized values.

There are two important cases where a floating point number cannot be normalized. The value 0.0 is a
special case. Obviously it cannot be normalized because the floating point representation for zero has no one
bits in the mantissa. This, however, is not a problem since we can exactly represent the value zero with only
a single bit.

The second case is when we have some H.O. bits in the mantissa which are zero but the biased exponent
is also zero (and we cannot decrement it to normalize the mantissa). Rather than disallow certain small val-
ues, whose H.O. mantissa bits and biased exponent are zero (the most negative exponent possible), the IEEE
standard allows special denormalized values to represent these smaller values5. Although the use of denor-

5. The alternative would be to underflow the values to zero.

79 64 7 0

Mantissa BitsExponent Bi tsSign
Bi t

……
Page 80 © 2000, By Randall Hyde Beta Draft - Do not distribute

Data Representation
malized values allows IEEE floating point computations to produce better results than if underflow occurred,
keep in mind that denormalized values offer less bits of precision.

Since the FPU always converts single and double precision values to extended precision, extended pre-
cision arithmetic is actually faster than single or double precision. Therefore, the expected performance ben-
efit of using the smaller formats is not present on these chips. However, when designing the Pentium/586
CPU, Intel redesigned the built-in floating point unit to better compete with RISC chips. Most RISC chips
support a native 64 bit double precision format which is faster than Intel’s extended precision format. There-
fore, Intel provided native 64 bit operations on the Pentium to better compete against the RISC chips. There-
fore, the double precision format is the fastest on the Pentium and later chips.

4.2.2 HLA Support for Floating Point Values

HLA provides several data types and library routines to support the use of floating point data in your
assembly language programs. These include built-in types to declare floating point variables as well as rou-
tines that provide floating point input, output, and conversion.

Perhaps the best place to start when discussing HLA’s floating point facilities is with a description of
floating point literal constants. HLA floating point constants allow the following syntax:

• An optional “+” or “-” symbol, denoting the sign of the mantissa (if this is not present, HLA
assumes that the mantissa is positive),

• Followed by one or more decimal digits,
• Optionally followed by a decimal point and one or more decimal digits,
• Optionally followed by an “e” or “E”, optionally followed by a sign (“+” or “-”) and one or

more decimal digits.

Note: the decimal point or the “e”/”E” must be present in order to differentiate this value from an integer or
unsigned literal constant. Here are some examples of legal literal floating point constants:

1.234 3.75e2 -1.0 1.1e-1 1e+4 0.1 -123.456e+789 +25e0

Notice that a floating point literal constant cannot begin with a decimal point; it must begin with a decimal
digit so you must use “0.1” to represent “.1” in your programs.

HLA also allows you to place an underscore character (“_”) between any two consecutive decimal digits
in a floating point literal constant. You may use the underscore character in place of a comma (or other lan-
guage-specific separator character) to help make your large floating point numbers easier to read. Here are
some examples:

1_234_837.25 1_000.00 789_934.99 9_999.99

To declare a floating point variable you use the real32, real64, or real80 data types. Like their integer
and unsigned brethren, the number at the end of these data type declarations specifies the number of bits
used for each type’s binary representation. Therefore, you use real32 to declare single precision real values,
real64 to declare double precision floating point values, and real80 to declare extended precision floating
point values. Other than the fact that you use these types to declare floating point variables rather than inte-
gers, their use is nearly identical to that for int8, int16, int32, etc. The following examples demonstrate these
declarations and their syntax:

static

fltVar1: real32;
fltVar1a: real32 := 2.7;
pi: real32 := 3.14159;
DblVar: real64;
DblVar2: real64 := 1.23456789e+10;
XPVar: real80;
XPVar2: real80 := -1.0e-104;
Beta Draft - Do not distribute © 2000, By Randall Hyde Page 81

Chapter Four Volume One
To output a floating point variable in ASCII form, you would use one of the stdout.putr32, std-
out.putr64, or stdout.putr80 routines. These procedures display a number in decimal notation, that is, a
string of digits, an optional decimal point and a closing string of digits. Other than their names, these three
routines use exactly the same calling sequence. Here are the calls and parameters for each of these routines:

stdout.putr80(r:real80; width:uns32; decpts:uns32);
stdout.putr64(r:real64; width:uns32; decpts:uns32);
stdout.putr32(r:real32; width:uns32; decpts:uns32);

The first parameter to these procedures is the floating point value you wish to print. The size of this
parameter must match the procedure’s name (e.g., the r parameter must be an 80-bit extended precision
floating point variable when calling the stdout.putr80 routine). The second parameter specifies the field
width for the output text; this is the number of print positions the number will require when the procedure
displays it. Note that this width must include print positions for the sign of the number and the decimal
point. The third parameter specifies the number of print positions after the decimal point. For example,

stdout.putr32(pi, 10, 4);

displays the value

_ _ _ _ 3.1416

(the underscores represent leading spaces in this example).

Of course, if the number is very large or very small, you will want to use scientific notation rather than
decimal notation for your floating point numeric output. The HLA Standard Library stdout.pute32, std-
out.pute64, and stdout.pute80 routines provide this facility. These routines use the following procedure pro-
totypes:

stdout.pute80(r:real80; width:uns32);
stdout.pute64(r:real64; width:uns32);
stdout.pute32(r:real32; width:uns32);

Unlike the decimal output routines, these scientific notation output routines do not require a third
parameter specifying the number of digits after the decimal point to display. The width parameter, indi-
rectly, specifies this value since all but one of the mantissa digits always appears to the right of the decimal
point. These routines output their values in decimal notation, similar to the following:

1.23456789e+10 -1.0e-104 1e+2

You can also output floating point values using the HLA Standard Library stdout.put routine. If you
specify the name of a floating point variable in the stdout.put parameter list, the stdout.put code will output
the value using scientific notation. The actual field width varies depending on the size of the floating point
variable (the stdout.put routine attempts to output as many significant digits as possible, in this case). Exam-
ple:

stdout.put(“XPVar2 = “, XPVar2);

If you specify a field width specification, by using a colon followed by a signed integer value, then the
stdout.put routine will use the appropriate stdout.puteXX routine to display the value. That is, the number
will still appear in scientific notation, but you get to control the field width of the output value. Like the field
width for integer and unsigned values, a positive field width right justifies the number in the specified field, a
negative number left justifies the value. Here is an example that prints the XPVar2 variable using ten print
positions:

stdout.put(“XPVar2 = “, XPVar2:10);

If you wish to use stdout.put to print a floating point value in decimal notation, you need to use the fol-
lowing syntax:
Page 82 © 2000, By Randall Hyde Beta Draft - Do not distribute

Data Representation
Variable_Name : Width : DecPts

Note that the DecPts field must be a non-negative integer value.

When stdout.put contains a parameter of this form, it calls the corresponding stdout.putrXX routine to
display the specified floating point value. As an example, consider the following call:

stdout.put(“Pi = “, pi:5:3);

The corresponding output is

3.142

The HLA Standard Library provides several other useful routines you can use when outputting floating
point values. Consult the HLA Standard Library reference manual for more information on these routines.

The HLA Standard Library provides several routines to let you display floating point values in a wide
variety of formats. In contrast, the HLA Standard Library only provides two routines to support floating
point input: stdin.getf() and stdin.get(). The stdin.getf() routine requires the use of the 80x86 FPU stack, a
hardware component that this chapter is not going to cover. Therefore, this chapter will defer the discussion
of the stdin.getf() routine until the chapter on arithmetic, later in this text. Since the stdin.get() routine pro-
vides all the capabilities of the stdin.getf() routine, this deference will not prove to be a problem.

You’ve already seen the syntax for the stdin.get() routine; its parameter list simply contains a list of
variable names. Stdin.get() reads appropriate values for the user for each of the variables appearing in the
parameter list. If you specify the name of a floating point variable, the stdin.get() routine automatically
reads a floating point value from the user and stores the result into the specified variable. The following
example demonstrates the use of this routine:

stdout.put(“Input a double precision floating point value: “);
stdin.get(DblVar);

Warning: This section has discussed how you would declare floating point variables and
how you would input and output them. It did not discuss arithmetic. Floating point arith-
metic is different than integer arithmetic; you cannot use the 80x86 ADD and SUB
instructions to operating on floating point values. Floating point arithmetic will be the
subject of a later chapter in this text.

4.3 Binary Coded Decimal (BCD) Representation

Although the integer and floating point formats cover most of the numeric needs of an average program,
there are some special cases where other numeric representations are convenient. In this section we’ll dis-
cuss the Binary Coded Decimal (BCD) format since the 80x86 CPU provides a small amount of hardware
support for this data representation.

BCD values are a sequence of nibbles with each nibble representing a value in the range zero through
nine. Of course you can represent values in the range 0..15 using a nibble; the BCD format, however, uses
only 10 of the possible 16 different values for each nibble.

Each nibble in a BCD value represents a single decimal digit. Therefore, with a single byte (i.e., two
digits) we can represent values containing two decimal digits, or values in the range 0..99. With a word, we
can represent values having four decimal digits, or values in the range 0..9999. Likewise, with a double
word we can represent values with up to eight decimal digits (since there are eight nibbles in a double word
value).
Beta Draft - Do not distribute © 2000, By Randall Hyde Page 83

Chapter Four Volume One
Figure 4.5 BCD Data Representation in Memory

As you can see, BCD storage isn’t particularly memory efficient. For example, an eight-bit BCD vari-
able can represent values in the range 0..99 while that same eight bits, when holding a binary value, can rep-
resent values in the range 0..255. Likewise, a 16-bit binary value can represent values in the range 0..65535
while a 16-bit BCD value can only represent about 1/6 of those values (0..9999). Inefficient storage isn’t the
only problem. BCD calculations tend to be slower than binary calculations.

At this point, you’re probably wondering why anyone would ever use the BCD format. The BCD for-
mat does have two saving graces: it’s very easy to convert BCD values between the internal numeric repre-
sentation and their string representation; also, its very easy to encode multi-digit decimal values in hardware
(e.g., using a “thumb wheel” or dial) using BCD than it is using binary. For these two reasons, you’re likely
to see people using BCD in embedded systems (e.g., toaster ovens and alarm clocks) but rarely in general
purpose computer software.

A few decades ago people mistakenly thought that calculations involving BCD (or just ‘decimal’) arith-
metic was more accurate than binary calculations. Therefore, they would often perform ‘important’ calcula-
tions, like those involving dollars and cents (or other monetary units) using decimal-based arithmetic. While
it is true that certain calculations can produce more accurate results in BCD, this statement is not true in gen-
eral. Indeed, for most calculations (even those involving fixed point decimal arithmetic), the binary repre-
sentation is more accurate. For this reason, most modern computer programs represent all values in a binary
form. For example, the Intel x86 floating point unit (FPU) supports a pair of instructions for loading and
storing BCD values. Internally, however, the FPU converts these BCD values to binary and performs all cal-
culations in binary. It only uses BCD as an external data format (external to the FPU, that is). This generally
produces more accurate results and requires far less silicon than having a separate coprocessor that supports
decimal arithmetic.

This text will take up the subject of BCD arithmetic in a later chapter (See “Decimal Arithmetic” on
page 868.) Until then, you can safely ignore BCD unless you find yourself converting a COBOL program
to assembly language (which is quite unlikely).

4.4 Characters

Perhaps the most important data type on a personal computer is the character data type. The term “char-
acter” refers to a human or machine readable symbol that is typically a non-numeric entity. In general, the
term “character” refers to any symbol that you can normally type on a keyboard (including some symbols
that may require multiple key presses to produce) or display on a video display. Many beginners often con-
fuse the terms “character” and “alphabetic character.” These terms are not the same. Punctuation symbols,
numeric digits, spaces, tabs, carriage returns (enter), other control characters, and other special symbols are
also characters. When this text uses the term “character” it refers to any of these characters, not just the
alphabetic characters. When this text refers to alphabetic characters, it will use phrases like “alphabetic
characters,” “upper case characters,” or “lower case characters.”6.

6. Upper and lower case characters are always alphabetic characters within this text.

7 6 5 4 3 2 1 0

H.O. Nibble L.O. Nibble
(H.O. Digit) (L.O. Digit)

 0..9 0..9
Page 84 © 2000, By Randall Hyde Beta Draft - Do not distribute

Data Representation
Another common problem beginners have when they first encounter the character data type is differenti-
ating between numeric characters and numbers. The character ‘1’ is distinct and different from the value
one. The computer (generally) uses two different internal, binary, representations for numeric characters
(‘0’, ‘1’, ..., ‘9’) versus the numeric values zero through nine. You must take care not to confuse the two.

Most computer systems use a one or two byte sequence to encode the various characters in binary form.
Windows certainly falls into this category, using either the ASCII or Unicode encodings for characters. This
section will discuss the ASCII character set and the character declaration facilities that HLA provides.

4.4.1 The ASCII Character Encoding

The ASCII (American Standard Code for Information Interchange) Character set maps 128 textual char-
acters to the unsigned integer values 0..127 ($0..$7F). Internally, of course, the computer represents every-
thing using binary numbers; so it should come as no surprise that the computer also uses binary values to
represent non-numeric entities such as characters. Although the exact mapping of characters to numeric val-
ues is arbitrary and unimportant, it is important to use a standardized code for this mapping since you will
need to communicate with other programs and peripheral devices and you need to talk the same “language”
as these other programs and devices. This is where the ASCII code comes into play; it is a standardized
code that nearly everyone has agreed upon. Therefore, if you use the ASCII code 65 to represent the charac-
ter “A” then you know that some peripheral device (such as a printer) will correctly interpret this value as the
character “A” whenever you transmit data to that device.

You should not get the impression that ASCII is the only character set in use on computer systems. IBM
uses the EBCDIC character set family on many of its mainframe computer systems. Another common char-
acter set in use is the Unicode character set. Unicode is an extension to the ASCII character set that uses 16
bits rather than seven to represent characters. This allows the use of 65,536 different characters in the char-
acter set, allowing the inclusion of most symbols in the world’s different languages into a single unified
character set.

Since the ASCII character set provides only 128 different characters and a byte can represent 256 differ-
ent values, an interesting question arises: “what do we do with the values 128..255 that one could store into
a byte value when working with character data?” One answer is to ignore those extra values. That will be
the primary approach of this text. Another possibility is to extend the ASCII character set and add an addi-
tional 128 characters to the character set. Of course, this would tend to defeat the whole purpose of having a
standardized character set unless you could get everyone to agree upon the extensions. That is a difficult
task.

When IBM first created their IBM-PC, they defined these extra 128 character codes to contain various
non-English alphabetic characters, some line drawing graphics characters, some mathematical symbols, and
several other special characters. Since IBM’s PC was the foundation for what we typically call a PC today,
that character set has become a pseudo-standard on all IBM-PC compatible machines. Even on modern
Windows machines, which are not IBM-PC compatible and cannot run early PC software, the IBM extended
character set still survives. Note, however, that this PC character set (an extension of the ASCII character
set) is not universal. Most printers will not print the extended characters when using native fonts and many
programs (particularly in non-English countries) do not use those characters for the upper 128 codes in an
eight-bit value. For these reasons, this text will generally stick to the standard 128 character ASCII character
set. However, a few examples and programs in this text will use the IBM PC extended character set, partic-
ularly the line drawing graphic characters (see Appendix B).

Should you need to exchange data with other machines which are not PC-compatible, you have only
two alternatives: stick to standard ASCII or ensure that the target machine supports the extended IBM-PC
character set. Some machines, like the Apple Macintosh, do not provide native support for the extended
IBM-PC character set; however you may obtain a PC font which lets you display the extended character set.
Other machines have similar capabilities. However, the 128 characters in the standard ASCII character set
are the only ones you should count on transferring from system to system.

Despite the fact that it is a “standard”, simply encoding your data using standard ASCII characters does
not guarantee compatibility across systems. While it’s true that an “A” on one machine is most likely an “A”
Beta Draft - Do not distribute © 2000, By Randall Hyde Page 85

Chapter Four Volume One
on another machine, there is very little standardization across machines with respect to the use of the control
characters. Indeed, of the 32 control codes plus delete, there are only four control codes commonly sup-
ported – backspace (BS), tab, carriage return (CR), and line feed (LF). Worse still, different machines often
use these control codes in different ways. End of line is a particularly troublesome example. Windows,
MS-DOS, CP/M, and other systems mark end of line by the two-character sequence CR/LF. Apple Macin-
tosh, and many other systems mark the end of line by a single CR character. UNIX systems mark the end of
a line with a single LF character. Needless to say, attempting to exchange simple text files between such sys-
tems can be an experience in frustration. Even if you use standard ASCII characters in all your files on these
systems, you will still need to convert the data when exchanging files between them. Fortunately, such con-
versions are rather simple.

Despite some major shortcomings, ASCII data is the standard for data interchange across computer sys-
tems and programs. Most programs can accept ASCII data; likewise most programs can produce ASCII data.
Since you will be dealing with ASCII characters in assembly language, it would be wise to study the layout
of the character set and memorize a few key ASCII codes (e.g., “0”, “A”, “a”, etc.).

The ASCII character set (excluding the extended characters defined by IBM) is divided into four groups
of 32 characters. The first 32 characters, ASCII codes 0 through $1F (31), form a special set of non-printing
characters called the control characters. We call them control characters because they perform various
printer/display control operations rather than displaying symbols. Examples include carriage return, which
positions the cursor to the left side of the current line of characters7, line feed (which moves the cursor down
one line on the output device), and back space (which moves the cursor back one position to the left). Unfor-
tunately, different control characters perform different operations on different output devices. There is very
little standardization among output devices. To find out exactly how a control character affects a particular
device, you will need to consult its manual.

The second group of 32 ASCII character codes comprise various punctuation symbols, special charac-
ters, and the numeric digits. The most notable characters in this group include the space character (ASCII
code $20) and the numeric digits (ASCII codes $30..$39). Note that the numeric digits differ from their
numeric values only in the H.O. nibble. By subtracting $30 from the ASCII code for any particular digit you
can obtain the numeric equivalent of that digit.

The third group of 32 ASCII characters is reserved for the upper case alphabetic characters. The ASCII
codes for the characters “A”..”Z” lie in the range $41..$5A (65..90). Since there are only 26 different alpha-
betic characters, the remaining six codes hold various special symbols.

The fourth, and final, group of 32 ASCII character codes are reserved for the lower case alphabetic sym-
bols, five additional special symbols, and another control character (delete). Note that the lower case charac-
ter symbols use the ASCII codes $61..$7A. If you convert the codes for the upper and lower case characters
to binary, you will notice that the upper case symbols differ from their lower case equivalents in exactly one
bit position. For example, consider the character code for “E” and “e” in the following figure:

7. Historically, carriage return refers to the paper carriage used on typewriters. A carriage return consisted of physically mov-
ing the carriage all the way to the right so that the next character typed would appear at the left hand side of the paper.
Page 86 © 2000, By Randall Hyde Beta Draft - Do not distribute

Data Representation
Figure 4.6 ASCII Codes for “E” and “e”

The only place these two codes differ is in bit five. Upper case characters always contain a zero in bit
five; lower case alphabetic characters always contain a one in bit five. You can use this fact to quickly convert
between upper and lower case. If you have an upper case character you can force it to lower case by setting
bit five to one. If you have a lower case character and you wish to force it to upper case, you can do so by set-
ting bit five to zero. You can toggle an alphabetic character between upper and lower case by simply invert-
ing bit five.

Indeed, bits five and six determine which of the four groups in the ASCII character set you’re in:

So you could, for instance, convert any upper or lower case (or corresponding special) character to its equiv-
alent control character by setting bits five and six to zero.

Consider, for a moment, the ASCII codes of the numeric digit characters:

Table 9: ASCII Groups

Bit 6 Bit 5 Group

0 0 Control Characters

0 1 Digits & Punctuation

1 0 Upper Case & Special

1 1 Lower Case & Special

Table 10: ASCII Codes for Numeric Digits

Character Decimal Hexadecimal

“0” 48 $30

“1” 49 $31

“2” 50 $32

“3” 51 $33

“4” 52 $34

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

0 1 0 0 0 1 0 1

0 1 1 0 0 1 0 1

E

e

Beta Draft - Do not distribute © 2000, By Randall Hyde Page 87

Chapter Four Volume One
The decimal representations of these ASCII codes are not very enlightening. However, the hexadecimal
representation of these ASCII codes reveals something very important – the L.O. nibble of the ASCII code is
the binary equivalent of the represented number. By stripping away (i.e., setting to zero) the H.O. nibble of a
numeric character, you can convert that character code to the corresponding binary representation. Con-
versely, you can convert a binary value in the range 0..9 to its ASCII character representation by simply set-
ting the H.O. nibble to three. Note that you can use the logical-AND operation to force the H.O. bits to zero;
likewise, you can use the logical-OR operation to force the H.O. bits to %0011 (three).

Note that you cannot convert a string of numeric characters to their equivalent binary representation by
simply stripping the H.O. nibble from each digit in the string. Converting 123 ($31 $32 $33) in this fashion
yields three bytes: $010203, not the correct value which is $7B. Converting a string of digits to an integer
requires more sophistication than this; the conversion above works only for single digits.

4.4.2 HLA Support for ASCII Characters

Although you could easily store character values in byte variables and use the corresponding numeric
equivalent ASCII code when using a character literal in your program, such agony is unnecessary - HLA
provides good support for character variables and literals in your assembly language programs.

Character literal constants in HLA take one of two forms: a single character surrounded by apostrophes
or a pound symbol (“#”) followed by a numeric constant in the range 0..127 specifying the ASCII code of
the character. Here are some examples:

‘A’ #65 #$41 #%0100_0001

Note that these examples all represent the same character (‘A’) since the ASCII code of ‘A’ is 65.

With a single exception, only a single character may appear between the apostrophes in a literal charac-
ter constant. That single exception is the apostrophe character itself. If you wish to create an apostrophe lit-
eral constant, place four apostrophes in a row (i.e., double up the apostrophe inside the surrounding
apostrophes), i.e.,

’’’’

The pound sign operator (“#”) must precede a legal HLA numeric constant (either decimal, hexadecimal
or binary as the example above indicates). In particular, the pound sign is not a generic character conversion
function; it cannot precede registers or variable names, only constants. As a general rule, you should always
use the apostrophe form of the character literal constant for graphic characters (that is, those that are print-
able or displayable). Use the pound sign form of character literal constants for control characters (that are
invisible, or do funny things when you print them) or for extended ASCII characters that may not display or
print properly within your source code.

Notice the difference between a character literal constant and a string literal constant in your programs.
Strings are sequences of zero or more characters surrounded by quotation marks, characters are surrounded
by apostrophes. It is especially important to realize that

‘A’ ≠ “A”

“5” 53 $35

“6” 54 $36

“7” 55 $37

“8” 56 $38

“9” 57 $39

Table 10: ASCII Codes for Numeric Digits

Character Decimal Hexadecimal
Page 88 © 2000, By Randall Hyde Beta Draft - Do not distribute

Data Representation
The character constant ‘A’ and the string containing the single character “A” have two completely differ-
ent internal representations. If you attempt to use a string containing a single character where HLA expects
a character constant, HLA will report an error. Strings and string constants will be the subject of a later
chapter.

To declare a character variable in an HLA program, you use the char data type. The following declara-
tion, for example, demonstrates how to declare a variable named UserInput:

static
UserInput: char;

This declaration reserves one byte of storage that you could use to store any character value (including
eight-bit extended ASCII characters). You can also initialize character variables as the following example
demonstrates:

static

TheCharA: char := ‘A’;
ExtendedChar char := #128;

Since character variables are eight-bit objects, you can manipulate them using eight-bit registers. You
can move character variables into eight-bit registers and you can store the value of an eight-bit register into a
character variable.

The HLA Standard Library provides a handful of routines that you can use for character I/O and manip-
ulation; these include stdout.putc, stdout.putcsize, stdout.put, stdin.getc, and stdin.get.

The stdout.putc routine uses the following calling sequence:

stdout.putc(chvar);

This procedure outputs the single character parameter passed to it as a character to the standard output
device. The parameter may be any char constant or variable, or a byte variable or register8.

The stdout.putcsize routine provides output width control when displaying character variables. The
calling sequence for this procedure is

stdout.putcsize(charvar, widthInt32, fillchar);

This routine prints the specified character (parameter c) using at least width print positions9. If the absolute
value of width is greater than one, then stdout.putcsize prints the fill character as padding. If the value of
width is positive, then stdout.putcsize prints the character right justified in the print field; if width is nega-
tive, then stdout.putcsize prints the character left justified in the print field. Since character output is usually
left justified in a field, the width value will normally be negative for this call. The space character is the most
common value used for the fill character.

You can also print character values using the generic stdout.put routine. If a character variable appears
in the stdout.put parameter list, then stdout.put will automatically print it as a character value, e.g.,

stdout.put(“Character c = ‘”, c, “‘”, nl);

You can read characters from the standard input using the stdin.getc and stdin.get routines. The
stdin.getc routine does not have any parameters. It reads a single character from the standard input buffer
and returns this character in the AL register. You may then store the character value away or otherwise
manipulate the character in the AL register. The following program reads a single character from the user,
converts it to upper case if it is a lower case character, and then displays the character:

8. If you specify a byte variable or a byte-sized register as the parameter, the stdout.putc routine will output the character
whose ASCII code appears in the variable or register.
9. The only time stdout.putcsize uses more print positions than you specify is when you specify zero as the width; then this
routine uses exactly one print position.
Beta Draft - Do not distribute © 2000, By Randall Hyde Page 89

Chapter Four Volume One
program charInputDemo;
#include("stdlib.hhf");
begin charInputDemo;

 stdout.put("Enter a character: ");
 stdin.getc();
 if(al >= 'a') then

 if(al <= 'z') then

 and($5f, al);

 endif;

 endif;
 stdout.put
 (
 "The character you entered, possibly ", nl,
 "converted to upper case, was '"
);
 stdout.putc(al);
 stdout.put("'", nl);

end charInputDemo;

Program 4.1 Character Input Sample

You can also use the generic stdin.get routine to read character variables from the user. If a stdin.get
parameter is a character variable, then the stdin.get routine will read a character from the user and store the
character value into the specified variable. Here is the program above rewritten to use the stdin.get routine:

program charInputDemo2;
#include("stdlib.hhf");
static
 c:char;

begin charInputDemo2;

 stdout.put("Enter a character: ");
 stdin.get(c);
 if(c >= 'a') then

 if(c <= 'z') then

 and($5f, c);

 endif;

 endif;
 stdout.put
 (
 "The character you entered, possibly ", nl,
 "converted to upper case, was '",
 c,
 "'", nl
);

Page 90 © 2000, By Randall Hyde Beta Draft - Do not distribute

Data Representation
end charInputDemo2;

Program 4.2 Stdin.get Character Input Sample

As you may recall from the last chapter, the HLA Standard Library buffers its input. Whenever you
read a character from the standard input using stdin.getc or stdin.get, the library routines read the next avail-
able character from the buffer; if the buffer is empty, then the program reads a new line of text from the user
and returns the first character from that line. If you want to guarantee that the program reads a new line of
text from the user when you read a character variable, you should call the stdin.FlushInput routine before
attempting to read the character. This will flush the current input buffer and force the input of a new line of
text on the next input (which should be your stdin.getc or stdin.get call).

The end of line is problematic under Windows. When reading data from the standard input, the end of
line is marked by the user pressing the Enter key, which corresponds to the carriage return ASCII code.
When reading data from a text file, the end of a line of text is marked by a carriage return/line feed sequence.
This disparity makes it difficult to write general programs that work regardless of their source of input data.
To help alleviate this problem, the HLA Standard Library filters the input and translates the end of line
sequence to a single line feed character. So when you are reading data from the standard input, the HLA
Standard Library input routines translate the Enter key (carriage return) to a line feed. When reading data
from a text file, the Standard Library routines convert the CR/LF sequence to a single line feed. Therefore,
your programs can simply test for a line feed character to check for the end of the current line when reading
characters from the line. The following program demonstrates this (note the use of the stdio.lf constant to
represent the line feed character):

program eolnDemo1;
#include("stdlib.hhf");
begin eolnDemo1;

 stdout.put("Enter a short line of text: ");
 stdin.FlushInput();
 forever

 stdin.getc();
 breakif(al = stdio.lf);
 stdout.putc(al);
 stdout.put("=$", al, nl);

 endfor;

end eolnDemo1;

Program 4.3 Testing for End of Line When Reading Characters

Another way to test for the end of the current line is to use the HLA Standard Library stdin.eoln func-
tion. This procedure returns true (one) in the AL register if all the current input characters have been
exhausted, it returns false (zero) otherwise. The following sample program is a rewrite of the above code
using the stdin.eoln function.

program eolnDemo2;
#include("stdlib.hhf");
begin eolnDemo2;

 stdout.put("Enter a short line of text: ");
Beta Draft - Do not distribute © 2000, By Randall Hyde Page 91

Chapter Four Volume One
 stdin.FlushInput();
 repeat

 stdin.getc();
 stdout.putc(al);
 stdout.put("=$", al, nl);

 until(stdin.eoln());

end eolnDemo2;

Program 4.4 Testing for End of Line Using Stdin.eoln

The HLA language and the HLA Standard Library provide many other procedures and additional sup-
port for character objects. Later chapters in this textbook, as well as the HLA reference documentation,
describe how to use these features.

4.4.3 The ASCII Character Set

The following table lists the binary, hexadecimal, and decimal representations for each of the 128 ASCII
character codes.

Table 11: ASCII Character Set

Binary Hex Decimal Character

0000_0000 00 0 NULL

0000_0001 01 1 ctrl A

0000_0010 02 2 ctrl B

0000_0011 03 3 ctrl C

0000_0100 04 4 ctrl D

0000_0101 05 5 ctrl E

0000_0110 06 6 ctrl F

0000_0111 07 7 bell

0000_1000 08 8 backspace

0000_1001 09 9 tab

0000_1010 0A 10 line feed

0000_1011 0B 11 ctrl K

0000_1100 0C 12 form feed

0000_1101 0D 13 return

0000_1110 0E 14 ctrl N

0000_1111 0F 15 ctrl O
Page 92 © 2000, By Randall Hyde Beta Draft - Do not distribute

Data Representation
0001_0000 10 16 ctrl P

0001_0001 11 17 ctrl Q

0001_0010 12 18 ctrl R

0001_0011 13 19 ctrl S

0001_0100 14 20 ctrl T

0001_0101 15 21 ctrl U

0001_0110 16 22 ctrl V

0001_0111 17 23 ctrl W

0001_1000 18 24 ctrl X

0001_1001 19 25 ctrl Y

0001_1010 1A 26 ctrl Z

0001_1011 1B 27 ctrl [

0001_1100 1C 28 ctrl \

0001_1101 1D 29 Esc

0001_1110 1E 30 ctrl ^

0001_1111 1F 31 ctrl _

0010_0000 20 32 space

0010_0001 21 33 !

0010_0010 22 34 "

0010_0011 23 35 #

0010_0100 24 36 $

0010_0101 25 37 %

0010_0110 26 38 &

0010_0111 27 39 '

0010_1000 28 40 (

0010_1001 29 41)

0010_1010 2A 42 *

0010_1011 2B 43 +

0010_1100 2C 44 ,

0010_1101 2D 45 -

0010_1110 2E 46 .

Table 11: ASCII Character Set

Binary Hex Decimal Character
Beta Draft - Do not distribute © 2000, By Randall Hyde Page 93

Chapter Four Volume One
0010_1111 2F 47 /

0011_0000 30 48 0

0011_0001 31 49 1

0011_0010 32 50 2

0011_0011 33 51 3

0011_0100 34 52 4

0011_0101 35 53 5

0011_0110 36 54 6

0011_0111 37 55 7

0011_1000 38 56 8

0011_1001 39 57 9

0011_1010 3A 58 :

0011_1011 3B 59 ;

0011_1100 3C 60 <

0011_1101 3D 61 =

0011_1110 3E 62 >

0011_1111 3F 63 ?

0100_0000 40 64 @

0100_0001 41 65 A

0100_0010 42 66 B

0100_0011 43 67 C

0100_0100 44 68 D

0100_0101 45 69 E

0100_0110 46 70 F

0100_0111 47 71 G

0100_1000 48 72 H

0100_1001 49 73 I

0100_1010 4A 74 J

0100_1011 4B 75 K

0100_1100 4C 76 L

0100_1101 4D 77 M

Table 11: ASCII Character Set

Binary Hex Decimal Character
Page 94 © 2000, By Randall Hyde Beta Draft - Do not distribute

Data Representation
0100_1110 4E 78 N

0100_1111 4F 79 O

0101_0000 50 80 P

0101_0001 51 81 Q

0101_0010 52 82 R

0101_0011 53 83 S

0101_0100 54 84 T

0101_0101 55 85 U

0101_0110 56 86 V

0101_0111 57 87 W

0101_1000 58 88 X

0101_1001 59 89 Y

0101_1010 5A 90 Z

0101_1011 5B 91 [

0101_1100 5C 92 \

0101_1101 5D 93]

0101_1110 5E 94 ^

0101_1111 5F 95 _

0110_0000 60 96 `

0110_0001 61 97 a

0110_0010 62 98 b

0110_0011 63 99 c

0110_0100 64 100 d

0110_0101 65 101 e

0110_0110 66 102 f

0110_0111 67 103 g

0110_1000 68 104 h

0110_1001 69 105 i

0110_1010 6A 106 j

0110_1011 6B 107 k

0110_1100 6C 108 l

Table 11: ASCII Character Set

Binary Hex Decimal Character
Beta Draft - Do not distribute © 2000, By Randall Hyde Page 95

Chapter Four Volume One
4.5 The UNICODE Character Set

Although the ASCII character set is, unquestionably, the most popular character representation on com-
puters, it is certainly not the only format around. For example, IBM uses the EBCDIC code on many of its
mainframe and minicomputer lines. Since EBCDIC appears mainly on IBM’s big iron and you’ll rarely
encounter it on personal computer systems, we will not consider that character set in this text. Another char-
acter representation that is becoming popular on small computer systems (and large ones, for that matter) is
the Unicode character set. Unicode overcomes two of ASCII’s greatest limitations: the limited character
space (i.e., a maximum of 128/256 characters in an eight-bit byte) and the lack of international (beyond the
USA) characters.

Unicode uses a 16-bit word to represent a single character. Therefore, Unicode supports up to 65,536
different character codes. This is obviously a huge advance over the 256 possible codes we can represent
with an eight-bit byte. Unicode is upwards compatible from ASCII. Specifically, if the H.O. 17 bits of a
Unicode character contain zero, then the L.O. seven bits represent the same character as the ASCII character
with the same character code. If the H.O. 17 bits contain some non-zero value, then the character represents
some other value. If you’re wondering why so many different character codes are necessary, simply note
that certain Asian character sets contain 4096 characters (at least, their Unicode subset).

0110_1101 6D 109 m

0110_1110 6E 110 n

0110_1111 6F 111 o

0111_0000 70 112 p

0111_0001 71 113 q

0111_0010 72 114 r

0111_0011 73 115 s

0111_0100 74 116 t

0111_0101 75 117 u

0111_0110 76 118 v

0111_0111 77 119 w

0111_1000 78 120 x

0111_1001 79 121 y

0111_1010 7A 122 z

0111_1011 7B 123 {

0111_1100 7C 124 |

0111_1101 7D 125 }

0111_1110 7E 126 ~

0111_1111 7F 127

Table 11: ASCII Character Set

Binary Hex Decimal Character
Page 96 © 2000, By Randall Hyde Beta Draft - Do not distribute

Data Representation
This text will stick to the ASCII character set except for a few brief mentions of Unicode here and there.
Eventually, this text may have to eliminate the discussion of ASCII in favor of Unicode since all new ver-
sions of Windows use Unicode internally (and convert to ASCII as necessary). Unfortunately, many string
algorithms are not as conveniently written for Unicode as for ASCII (especially character set functions) so
we’ll stick with ASCII in this text as long as possible.

4.6 Other Data Representations

Of course, we can represent many different objects other than numbers and characters in a computer
system. The following subsections provide a brief description of the different real-world data types you
might encounter.

4.6.1 Representing Colors on a Video Display

As you’re probably aware, color images on a computer display are made up of a series of dots known as
pixels (which is short for “picture elements.”). Different display modes (depending on the capability of the
display adapter) use different data representations for each of these pixels. The one thing in common
between these data types is that they control the mixture of the three additive primary colors (red, green, and
blue) to form a specific color on the display. The question, of course, is how much of each of these colors do
they mix together?

Color depth is the term video card manufacturers use to describe how much red, green, and blue they
mix together for each pixel. Modern video cards generally provides three color depths of eight, sixteen, or
twenty-four bits, allowing 256, 65536, or over 16 million colors per pixel on the display. This produces
images that are somewhat coarse and grainy (eight-bit images) to “Polaroid quality” (16-bit images), on up
to “photographic quality” (24-bit images)10.

One problem with these color depths is that two of the three formats do not contain a number of bits that
is evenly divisible by three. Therefore, in each of these formats at least one of the three primary colors will
have fewer bits than the others. For example, with an eight-bit color depth, two of the colors can have three
bits (or eight different shades) associated with them while one of the colors must have only two bits (or four
shades). Therefore, when distributing the bits there are three formats possible: 2-3-3 (two bits red, three bits
green, and three bits blue), 3-2-3, or 3-3-2. Likewise, with a 16 bit color depth, two of the three colors can
have five bits while the third color can have six bits. This lets us generate three different palettes using the
bit values 5-5-6, 5-6-5, or 6-5-5. For 24-bit displays, each primary color can have eight bits, so there is an
even distribution of the colors for each pixel.

A 24-bit display produces amazingly good results. A 16-bit display produces okay images. Eight-bit
displays, to put it bluntly, produce horrible photographic images (they do produce good synthetic images
like those you would manipulate with a draw program). To produce better images when using an eight-bit
display, most cards provide a hardware palette. A palette is nothing more than an array of 24-bit values con-
taining 256 elements11. The system uses the eight-bit pixel value as an index into this array of 256 values
and displays the color associated with the 24-bit entry in the palette table. Although the display can still dis-
play only 256 different colors at one time, the palette mechanism lets users select exactly which colors they
want to display. For example, they could display 250 shades of blue and six shades of purple if such a mix-
ture produces a better image for them.

10. Some graphic artists would argue that 24 bit images are not of a sufficient quality. There are some display/printer./scanner
devices capable of working with 33-bit, 36-bit, and even 48-bit images; if, of course, you’re willing to pay for them.
11. Actually, the color depth of each palette entry is not necessarily fixed at 24 bits. Some display devices, for example, use
18-bit entries in their palette.
Beta Draft - Do not distribute © 2000, By Randall Hyde Page 97

Chapter Four Volume One
Figure 4.7 Extending the Number of Colors Using a Palette

Unfortunately, the palette scheme only works for displays with minimal color depths. For example,
attempting to use a palette with 16-bit images would require a lookup table with 65,536 different three-byte
entries – a bit much for today’s operating systems (since they may have to reload the palette every time you
select a window on the display). Fortunately, the higher bit depths don’t require the palette concept as much
as the eight-bit color depth.

Obviously, we could dream up other schemes for representing pixel color on the display. Some display
systems, for example, use the subtractive primary colors (Cyan, Yellow, and Magenta, plus Black, the
so-called CYMK color space). Other display system use fewer or more bits to represent the values. Some
distribute the bits between various shades. Monochrome displays typically use one, four, or eight bit pixels
to display various gray scales (e.g., two, sixteen, or 256 shades of gray). However, the bit organizations of
this section are among the more popular in use by display adapters.

4.6.2 Representing Audio Information

Another real-world quantity you’ll often find in digital form on a computer is audio information. WAV
files, MP3 files, and other audio formats are quite popular on personal computers. An interesting question is
“how do we represent audio information inside the computer?” While many sound formats are far to com-

7 6 5 4 3 2 1 0

Eight-bit pixel value provide
an index into a table of 256
24-bit values. The value of
the selected element specifies
the 24-bit color to display.

Pixel Color
to Display
Page 98 © 2000, By Randall Hyde Beta Draft - Do not distribute

Data Representation
plex to discuss here (e.g., the MP3 format), it is relatively easy to represent sound using a simple sound data
format (something similar to the WAV file format). In this section we’ll explore a couple of possible ways to
represent audio information; but before we take a look at the digital format, perhaps it’s a wise idea to study
the analog format first.

Figure 4.8 Operation of a Speaker

Sounds you hear are the result of vibrating air molecules. When air molecules quickly vibrate back and
forth between 20 and 20,000 times per second, we interpret this as some sort of sound. A speaker (see Figure
4.8) is a device which vibrates air in response to an electrical signal. That is, it converts an electric signal
which alternates between 20 and 20,000 times per second (Hz) to an audible tone. Alternating a signal is
very easy on a computer, all you have to do is apply a logic one to an output port for some period of time and
then write a logic zero to the output port for a short period. Then repeat this over and over again. A plot of
this activity over time appears in Figure 4.9.

Figure 4.9 An Audible Sound Wave

Although many humans are capable of hearing tones in the range 20-20Khz, the PC’s speaker is not
capable of faithfully reproducing the tones in this range. It works pretty good for sounds in the range
100-10Khz, but the volume drops off dramatically outside this range. Fortunately, most modern PCs contain
a sound card that is quite capable (with appropriate external speakers) of faithfully representing “CD-Qual-
ity” sound. Of course, a good question might be “what is CD-Quality sound, anyway?” Well, to answer

Input an alternating electrical signal
to the speaker.

The speaker
responds by
pushing the
air in an out
according to
the electrical
signal.

Voltage applied
to speaker

Time

Logic 1

Logic 0

One Clock
Period

Note: Frequency is equal to the recipricol of the clock period. Audible sounds are
between 20 and 20,000 Hz.
Beta Draft - Do not distribute © 2000, By Randall Hyde Page 99

Chapter Four Volume One
that question, we’ve got to decide how we’re going to represent sound information in a binary format (see
“What is “Digital Audio” Anyway?” on page 100).

Take another look at Figure 4.9. This is a graph of amplitude (volume level) over time. If logic one
corresponds to a fully extended speaker cone and logic zero corresponds to a fully retracted speaker cone,
then the graph in Figure 4.9 suggests that we are constantly pushing the speaker cone in an out as time
progresses. This analog data, by the way, produces what is known as a “square wave” which tends to be a
very bright sound at high frequencies and a very buzzy sound at low frequencies. One advantage of a square
wave tone is that we only need to alternate a single bit of data over time in order to produce a tone. This is
very easy to do and very inexpensive. These two reasons are why the PC’s built-in speaker (not the sound
card) uses exactly this technique for produces beeps and squawks.

To produce different tones with a square wave sound system is very easy. All you’ve got to do is write a
one and a zero to some bit connected to the speaker somewhere between 20 and 20,000 times per second.
You can even produce “warbling” sounds by varying the frequency at which you write those zeros and ones
to the speaker.

One easy data format we can develop to represent digitized (or, should we say, “binarized”) audio data
is to create a stream of bits that we feed to the speaker every 1/40,000 seconds. By alternating ones and zeros
in this bit stream, we get a 20 KHz tone (remember, it takes a high and a low section to give us one clock
period, hence it will take two bits to produce a single cycle on the output). To get a 20 Hz tone, you would
create a bit stream that alternates between 1,000 zeros and 1,000 ones. With 1,000 zeros, the speaker will
remain in the retracted position for 1/40 seconds, following that with 1,000 ones leaves the speaker in the
fully extended position for 1/40 seconds. The end result is that the speaker moves in and out 20 times a sec-
ond (giving us our 20 Hz frequency). Of course, you don’t have to emit a regular pattern of zeros and ones.
By varying the positions of the ones and zeros in your data stream you can dramatically affect the type of
sound the system will produce.

The length of your data stream will determine how long the sound plays. With 40,000 bits, the sound
will play for one second (assuming each bit’s duration is 1/40,000 seconds). As you can see, this sound format
will consume 5,000 bytes per second. This may seem like a lot, but it’s relatively modest by digital audio
standards.

Unfortunately, square waves are very limited with respect to the sounds you can produce with them and
they are not very high fidelity (certainly not “CD-Quality”). Real analog audio signals are much more com-
plex and you cannot represent them with two different voltage levels on a speaker. Figure 4.10 provides a

What is “Digital Audio” Anyway?

“Digital Audio” or “digitized audio” is the conventional term the consumer electronics industry uses
to describe audio information encoded for use on a computer. What exactly does the term “digital” mean
in this case. Historically, the term “digit” refers to a finger. A digital numbering system is one based on
counting one’s fingers. Traditionally, then, a “digital number” was a base ten number (since the number-
ing system we most commonly use is based on the ten digits with which God endowed us). In the early
days of computer systems the terms “digital computer” and “binary computer” were quite prevalent, with
digital computers describing decimal computer systems (i.e., BCD-based systems). Binary computers, of
course, were those based on the binary numbering system. Although BCD computers are mainly an arti-
fact in the historical dust bin, the name “digital computer” lives on and is the common term to describe all
computer systems, binary or otherwise. Therefore, when people talk about the logic gates computer
designers use to create computer systems, they call them “digital logic.” Likewise, when they refer to
computerized data (like audio data), they refer to it as “digital.” Technically, the term “digital” should
mean base ten, not base two. Therefore, we should really refer to “digital audio” as “binary audio” to be
technically correct. However, it’s a little late in the game to change this term, so “digital XXXXX” lives
on. Just keep in mind that the two terms “digital audio” and “binary audio” really do mean the same thing,
even though they shouldn’t.
Page 100 © 2000, By Randall Hyde Beta Draft - Do not distribute

Data Representation
typical example of an audio waveform. Notice that the frequency and the amplitude (the height of the sig-
nal) varies considerably over time. To capture the height of the waveform at any given point in time we will
need more than two values; hence, we’ll need more than a single bit.

Figure 4.10 A Typical Audio Waveform

An obvious first approximation is to use a byte, rather than a single bit, to represent each point in time
on our waveform. We can convert this byte data to an analog signal using a device that is called a “digital to
analog converter” (how obvious) or DAC. This accepts some binary number as input and produces an ana-
log voltage on its output. This allows us to represent an impressive 256 different voltage levels in the wave-
form. By using eight bits, we can produce a far wider range of sounds than are possible with a single bit.
Of course, our data stream now consumes 40,000 bytes per second; quite a big step up from the 5,000
bytes/second in the previous example, but still relatively modest in terms of digital audio data rates.

You might think that 256 levels would be sufficient to produce some impressive audio. Unfortunately,
our hearing is logarithmic in nature and it takes an order of magnitude different in signal for a sound to
appear just a little bit louder. Therefore, our 256 different analog levels aren’t as impressive to our ears.
Although you can produce some decent sounds with an eight-bit data stream, it’s still not high fidelity and
certainly not “CD-Quality” audio.

The next obvious step up the ladder is a 16-bit value for each point of our digital audio stream. With
65,536 different analog levels we finally reach the realm of “CD-Quality” audio. Of course, we’re now con-
suming 80,000 bytes per second to achieve this! For technical reasons, the Compact Disc format actually
requires 44,100 16-bit samples per second. For a stereo (rather than monaural) data stream, you need two
16-bit values each 1/44,100 seconds. This produces a whopping data rate of over 160,000 bytes per second.
Now you understand the claim a littler earlier that 5,000 bytes per second is a relatively modest data rate.

Some very high quality digital audio systems use 20 bits of information and record the data at a higher
frequency than 44.1 KHz (48 KHz is popular, for example). Such data formats record a better signal at the
expense of a higher data rate. Some sound systems don’t require anywhere near the fidelity levels of even a
CD-Quality recording. Telephone conversations, for example, require only about 5,000 eight-bit samples
per second (this, by the way, is why phone modems are limited to approximately 56,000 bits per second,
which is about 5,000 bytes per second plus some overhead). Some common “digitizing” rates for audio
include the following:

• Eight-bit samples at 11 KHz
• Eight-bit samples at 22 KHz
• Eight-bit samples at 44.1 KHz
• 16-bit samples at 32 KHz
• 16-bit samples at 44.1 KHz
• 16-bit samples at 48 KHz

The fidelity increases as you move down this list.

The exact format for various audio file formats is way beyond the scope of this text since many of the
formats incorporate data compression. Some simple audio file formats like WAV and AIFF consist of little
more than the digitized byte stream, but other formats are nearly indecipherable in their complexity. The

Voltage applied
to speaker

Time

High Voltage

Low Voltage
Beta Draft - Do not distribute © 2000, By Randall Hyde Page 101

Chapter Four Volume One
exact nature of a sound data type is highly dependent upon the sound hardware in your system, so we won’t
delve any farther into this subject. There are several books available on computer audio and sound file for-
mats if you’re interested in pursuing this subject farther.

4.6.3 Representing Musical Information

Although it is possible to compress an audio data stream somewhat, high-quality audio will consume a
large amount of data. CD-Quality audio consumes just over 160 Kilobytes per second, so a CD at 650
Megabytes holds enough data for just over an hour of audio (in stereo). Earlier, you saw that we could use a
palette to allow higher quality color images on an eight-bit display. An interesting question is “can we create
a sound palette to let us encode higher quality audio?” Unfortunately, the general answer is no because
audio information is much less redundant than video information and you cannot produce good results with
rough approximation (which using a sound palette would require). However, if you’re trying to produce a
specific sound, rather than trying to faithfully reproduce some recording, there are some possibilities open to
you.

The advantage to the digitized audio format is that it records everything. In a music track, for example,
the digital information records all the instruments, the vocalists, the background noise, and, well, everything.
Sometimes you might not need to retain all this information. For example, if all you want to record is a key-
board player’s synthesizer, the ability to record all the other audio information simultaneously is not neces-
sary. In fact, with an appropriate interface to the computer, recording the audio signal from the keyboard is
completely unnecessary. A far more cost-effective approach (from a memory usage point of view) is to sim-
ply record the notes the keyboardist plays (along with the duration of each note and the velocity at which the
keyboardist plays the note) and then simply feed this keyboard information back to the synthesizer to play
the music at a later time. Since it only takes a few bytes to record each note the keyboardist plays, and the
keyboardist generally plays fewer than 100 notes per second, the amount of data needed to record a complex
piece of music is tiny compared to a digitized audio recording of the same performance.

One very popular format for recording musical information in this fashion is the MIDI format (MIDI
stands for Musical Instrument Digital Interface and it specifies how to connect musical instructions, comput-
ers, and other equipment together). The MIDI protocol uses multi-byte values to record information about a
series of instruments (a simple MIDI file can actually control up to 16 or more instruments simultaneously).

Although the internal data format of the MIDI protocol is beyond the scope of this chapter, it is interest-
ing to note that a MIDI command is effectively equivalent to a “palette look-up” for an audio signal. When
a musical instrument receives a MIDI command telling it to play back some note, that instrument generally
plays back some waveform stored in the synthesizer.

Note that you don’t actually need an external keyboard/synthesizer to play back MIDI files. Most sound
cards contain software that will interpret MIDI commands and play the accompany notes. These cards defi-
nitely use the MIDI command as an index into a “wave table” (short for waveform lookup table) to play the
accompanying sound. Although the quality of the sound these cards reproduce is often inferior to that a pro-
fessional synthesizer produces, they do let you play MIDI files without purchasing an expensive synthesizer
module12.

If you’re interested in the actual data format that MIDI uses, there are dozens of text available on the
MIDI format. Any local music store should carry several of these. You should also be able to find lots of
information on MIDI on the Internet (try Roland’s web site as a good starting point).

4.6.4 Representing Video Information

Recent increases in disk space, computer speed, and network access have allowed an explosion in the
popularity of multimedia on personal computers. Although the term “multimedia” suggests that the data for-

12. For those who would like a better MIDI experience using a sound card, some synthesizer manufacturers produce sound
cards with an integrated synthesizer on-board.
Page 102 © 2000, By Randall Hyde Beta Draft - Do not distribute

Data Representation
mat deals with many different types of media, most people use this term to describe digital video recording
and playback on a computer system. In fact, most multimedia formats support at least two mediums: video
and audio. The more popular formats like Apple’s Quicktime support other concurrent media streams as
well (e.g., a separate subtitle track, time codes, and device control). To simplify matters, we limit the discus-
sion in this section to digital video streams.

Fundamentally, a video image is nothing more than a succession of still pictures that the system displays
at some rate like 30 images per second. Therefore, if we want to create a digitized video image format, all
we really need to do is store 30 or so pictures for each second of video we wish to view. This may not seem
like a big deal, but consider that a typical “full screen” video display has 640x480 pixels or a total of
307,200 pixels. If we use a 24-bit RGB color space, then each pixel will require three bytes, raising the total
to 921,600 bytes per image. Displaying 30 of these images per second means our video format will con-
sume 27,648,000 bytes per second. Digital audio, at 160 Kilobytes per second is virtually nothing compared
to the data requirements for digital video.

Although computer systems and hard disk systems have advanced tremendously over the past decade,
maintaining a 30 MByte/second data rate from disk to display is a little too much to expect from all but the
most expensive workstations currently available (at least, in the year 2000 as this was written). Therefore,
most multimedia systems use various techniques (or combinations of these techniques) to get the data rate
down to something more reasonable. In stock computer systems, a common technique is to display a
320x240 quarter screen image rather than a full-screen 640x480 image. This reduces the data rate to about
seven megabytes per second.

Another technique digital video formats use is to compress the video data. Video data tends to contain
lots of redundant information that the system can eliminate through the use of compression. The popular
DV format for digital video camcorders, for example, compresses the data stream by almost 90%, requiring
only a 3.3 MByte/second data rate for full-screen video. This type of compression is not without cost. There
is a detectable, though slight, loss in image quality when employing DV compression on a video image.
Nevertheless, this compression makes it possible to deal with digital video data streams on a contemporary
computer system. Compressed data formats are a little beyond the scope of this chapter; however, by the
time you finish this text you should be well-prepared to deal with compressed data formats. Programmers
writing video data compression algorithms often use assembly language because compression and decom-
pression algorithms need to be very fast to process a video stream in real time. Therefore, keep reading this
text if you’re interested in working on these types of algorithms.

4.6.5 Where to Get More Information About Data Types

Since there are many ways to represent a particular real-world object inside the computer, and nearly an
infinite variety of real-world objects, this text cannot even begin to cover all the possibilities. In fact, one of
the most important steps in writing a piece of computer software is to carefully consider what objects the
software needs to represent and then choose an appropriate internal representation for that object. For some
objects or processes, an internal representation is fairly obvious; for other objects or processes, developing
an appropriate data type representation is a difficult task. Although we will continue to look at different data
representations throughout this text, if you’re really interested in learning more about data representation of
real world objects, activities, and processes, you should consult a good “Data Structures and Algorithms”
textbook. This text does not have the space to treat these subjects properly (since it still has to teach assem-
bly language). Most texts on data structures present their material in a high level language. Adopting this
material to assembly language is not difficult, especially once you’ve digested a large percentage of this text.
For something a little closer to home, you might consider reading Knuth’s “The Art of Computer Program-
ming” that describes data structures and algorithms using a synthetic assembly language called MIX.
Although MIX isn’t the same as HLA or even x86 assembly language, you will probably find it easier to
convert algorithms in this text to x86 than it would be to convert algorithms written in Pascal, Java, or C++ to
assembly language.
Beta Draft - Do not distribute © 2000, By Randall Hyde Page 103

Chapter Four Volume One
4.7 Putting It All Together

Perhaps the most important fact this chapter and the last chapter present is that computer programs all
use strings of binary bits to represent data internally. It is up to an application program to distinguish
between the possible representations. For example, the bit string %0100_0001 could represent the numeric
value 65, an ASCII character (‘A’), or the mantissa portion of a floating point value ($41). The CPU cannot
and does not distinguish between these different representations, it simply processes this eight-bit value as a
bit string and leaves the interpretation of the data to the application.

Beginning assembly language programmers often have trouble comprehending that they are responsible
for interpreting the type of data found in memory; after all, one of the most important abstractions that high
level languages provide is to associate a data type with a bit string in memory. This allows the compiler to
do the interpretation of data representation rather than the programmer. Therefore, an important point this
chapter makes is that assembly language programmers must handle this interpretation themselves. The HLA
language provides built-in data types that seem to provide these abstractions, but keep in mind that once
you’ve loaded a value into a register, HLA can no longer interpret that data for you, it is your responsibility
to use the appropriate machine instructions that operate on the specified data.

One small amount of checking that HLA and the CPU does enforce is size checking - HLA will not
allow you to mix sizes of operands within most instructions13. That is, you cannot specify a byte operand
and a word operand in the same instruction that expects its two operands to be the same size. However, as
the following program indicates, you can easily write a program that treats the same value as completely dif-
ferent types.

program dataInterpretation;
#include("stdlib.hhf");
static
 r: real32 := -1.0;

begin dataInterpretation;

 stdout.put("'r' interpreted as a real32 value: ", r:5:2, nl);

 stdout.put("'r' interpreted as an uns32 value: ");
 mov(r, eax);
 stdout.putu32(eax);
 stdout.newln();

 stdout.put("'r' interpreted as an int32 value: ");
 mov(r, eax);
 stdout.puti32(eax);
 stdout.newln();

 stdout.put("'r' interpreted as a dword value: $");
 mov(r, eax);
 stdout.putdw(eax);
 stdout.newln();

end dataInterpretation;

Program 4.5 Interpreting a Single Value as Several Different Data Types

13. The sign and zero extension instructions are an obvious exception, though HLA still checks the operand sizes to ensure
they are appropriate.
Page 104 © 2000, By Randall Hyde Beta Draft - Do not distribute

Data Representation
As this sample program demonstrates, you can get completely different results by interpreting your data
differently during your program’s execution. So always remember, it is your responsibility to interpret the
data in your program. HLA helps a little by allowing you to declare data types that are slightly more abstract
than bytes, words, or double words; HLA also provides certain support routines, like stdout.put, that will
automatically interpret these abstract data types for you; however, it is generally your responsibility to use
the appropriate machine instructions to consistently manipulate memory objects according to their data type.
Beta Draft - Do not distribute © 2000, By Randall Hyde Page 105

Chapter Four Volume One
Page 106 © 2000, By Randall Hyde Beta Draft - Do not distribute

Questions, Projects, and Laboratory Exercises
Chapter Five

Questions, Projects, and Lab Exercises

5.1 Questions

1) List the legal forms of a boolean expression in an HLA IF statement.

2) What data type do you use to declare a

a) 32-bit signed integer?

b) 16-bit signed integer?

c) 8-bit signed integer?

3) List all of the 80x86:

a) 8-bit general purpose registers.

b) 16-bit general purpose registers.

c) 32-bit general purpose registers.

4) Which registers overlap with

a) ax?

b) bx?

c) cx?

d) dx?

e) si?

f) di?

g) bp?

h) sp?

5) In what register does the condition codes appear?

6) What is the generic syntax of the HLA MOV instruction?

7) What are the legal operand formats for the MOV instruction?

8) What do the following symbols denote in an HLA boolean expression?

a) @c

b) @nc

c) @z

d) @nz

e) @o

f) @no

g) @s

h) @ns

9) Collectively, what do we call the carry, overflow, zero, and sign flags?

10) What high level language control structures does HLA provide?
Beta Draft - Do not distribute © 1999, By Randall Hyde Page 107

Chapter Five Volume One
11) What does the nl symbol represent?

12) What routine would you call, that doesn’t require any parameters, to print a new line on the screen?

13) If you wanted to print a nicely-formatted column of 32-bit integer values, what standard library routines
could you call to achieve this?

14) The stdin.getc() routine does not allow a parameter. Where does it return the character it reads from the user?

15) When reading an integer value from the user via the stdin.getiX routines, the program will stop with an
exception if the user enters a value that is out of range or enters a value that contains illegal characters. How
can you trap this error

16) What is the difference between the stdin.ReadLn() and stdin.FlushInput() procedures?

17) Convert the following decimal values to binary:

a) 128 b) 4096 c) 256 d) 65536 e) 254

f) 9 g) 1024 h) 15 i) 344 j) 998

k) 255 l) 512 m) 1023 n) 2048 o) 4095

p) 8192 q) 16,384 r) 32,768 s) 6,334 t) 12,334

u) 23,465v) 5,643 w) 464 x) 67 y) 888

18) Convert the following binary values to decimal:

a) 1001 1001b) 1001 1101 c) 1100 0011 d) 0000 1001 e)1111 1111

f) 0000 1111 g) 0111 1111h) 1010 0101 i) 0100 0101 j) 0101 1010

k) 1111 0000l) 1011 1101 m) 1100 0010 n) 0111 1110 o) 1110 1111

p) 0001 1000q) 1001 111 1r) 0100 0010 s) 1101 1100 t) 1111 0001

u) 0110 1001v) 0101 1011 w) 1011 1001 x) 1110 0110 y) 1001 0111

19) Convert the binary values in problem 2 to hexadecimal.

20) Convert the following hexadecimal values to binary:

a) 0ABCD b) 1024 c) 0DEAD d) 0ADD e) 0BEEF

f) 8 g) 05AAF h) 0FFFF i) 0ACDB j) 0CDBA

k) 0FEBA l) 35 m) 0BA n) 0ABA o) 0BAD

p) 0DAB q) 4321 r) 334 s) 45 t) 0E65

u) 0BEAD v) 0ABE w) 0DEAF x) 0DAD y) 9876

Perform the following hex computations (leave the result in hex):

21) 1234 +9876

22) 0FFF - 0F34

23) 100 - 1

24) 0FFE - 1

25) What is the importance of a nibble?

26) How many hexadecimal digits in:

a) a byte b) a word c) a double word

27) How many bits in a:

a) nibbleb) byte c) word d) double word

28) Which bit (number) is the H.O. bit in a:
Page 108 © 1999, By Randall Hyde Beta Draft - Do not distribute

Questions, Projects, and Laboratory Exercises
a) nibbleb) byte c) word d) double word

29) What character do we use as a suffix for hexadecimal numbers? Binary numbers? Decimal numbers?

30) Assuming a 16-bit two’s complement format, determine which of the values in question 4 are positive and
which are negative.

31) Sign extend all of the values in question two to sixteen bits. Provide your answer in hex.

32) Perform the bitwise AND operation on the following pairs of hexadecimal values. Present your answer in
hex. (Hint: convert hex values to binary, do the operation, then convert back to hex).

a) 0FF00, 0FF0b) 0F00F, 1234c) 4321, 1234d) 2341, 3241 e) 0FFFF, 0EDCB

f) 1111, 5789g) 0FABA, 4322h) 5523, 0F572i) 2355, 7466 j) 4765, 6543

k) 0ABCD, 0EFDCl) 0DDDD, 1234m) 0CCCC, 0ABCDn) 0BBBB, 1234o) 0AAAA, 1234

p) 0EEEE, 1248q) 8888, 1248r) 8086, 124F s) 8086, 0CFA7 t) 8765, 3456

u) 7089, 0FEDCv) 2435, 0BCDEw) 6355, 0EFDCx) 0CBA, 6884y) 0AC7, 365

33) Perform the logical OR operation on the above pairs of numbers.

34) Perform the logical XOR operation on the above pairs of numbers.

35) Perform the logical NOT operation on all the values in question four. Assume all values are 16 bits.

36) Perform the two’s complement operation on all the values in question four. Assume 16 bit values.

37) Sign extend the following hexadecimal values from eight to sixteen bits. Present your answer in hex.

a) FF b) 82 c) 12 d) 56 e) 98

f) BF g) 0F h) 78 i) 7F j) F7

k) 0E l) AE m) 45 n) 93 o) C0

p) 8F q) DA r) 1D s) 0D t) DE

u) 54 v) 45 w) F0 x) AD y) DD

38) Sign contract the following values from sixteen bits to eight bits. If you cannot perform the operation,
explain why.

a) FF00 b) FF12 c) FFF0 d) 12 e) 80

f) FFFF g) FF88 h) FF7F i) 7F j) 2

k) 8080 l) 80FF m) FF80 n) FF o) 8

p) F q) 1 r) 834 s) 34 t) 23

u) 67 v) 89 w) 98 x) FF98 y) F98

39) Sign extend the 16-bit values in question 22 to 32 bits.

40) Assuming the values in question 22 are 16-bit values, perform the left shift operation on them.

41) Assuming the values in question 22 are 16-bit values, perform the logical right shift operation on them.

42) Assuming the values in question 22 are 16-bit values, perform the arithmetic right shift operation on them.

43) Assuming the values in question 22 are 16-bit values, perform the rotate left operation on them.

44) Assuming the values in question 22 are 16-bit values, perform the rotate right operation on them.

45) Convert the following dates to the short packed format described in this chapter (see “Bit Fields and Packed
Data” on page 70). Present your values as a 16-bit hex number.

a) 1/1/92b) 2/4/56 c) 6/19/60 d) 6/16/86 e) 1/1/99

46) Convert the above dates to the long packed data format described in this chapter.

47) Describe how to use the shift and logical operations to extract the day field from the packed date record in
question 29. That is, wind up with a 16-bit integer value in the range 0..31.
Beta Draft - Do not distribute © 1999, By Randall Hyde Page 109

Chapter Five Volume One
48) Assume you’ve loaded a long packed date (See “Bit Fields and Packed Data” on page 70.) into the EAX reg-
ister. Explain how you can easily access the day and month fields directly, without any shifting or rotating of
the EAX register.

49) Suppose you have a value in the range 0..9. Explain how you could convert it to an ASCII character using the
basic logical operations.

50) The following C++ function locates the first set bit in the BitMap parameter starting at bit position start and
working up to the H.O. bit . If no such bit exists, it returns -1. Explain, in detail, how this function works.

int FindFirstSet(unsigned BitMap, unsigned start)
{

unsigned Mask = (1 << start);

while (Mask)
{

if (BitMap & Mask) return start;
++start;
Mask <<= 1;

}
return -1;

}

51) The C++ programming language does not specify how many bits there are in an unsigned integer. Explain
why the code above will work regardless of the number of bits in an unsigned integer.

52) The following C++ function is the complement to the function in the questions above. It locates the first zero
bit in the BitMap parameter. Explain, in detail, how it accomplishes this.

int FindFirstClr(unsigned BitMap, unsigned start)
{

return FindFirstSet(~BitMap, start);
}

53) The following two functions set or clear (respectively) a particular bit and return the new result. Explain, in
detail, how these functions operate.

unsigned SetBit(unsigned BitMap, unsigned position)
{

return BitMap | (1 << position);
}

unsigned ClrBit(unsigned BitMap, unsigned position)
{

return BitMap & ~(1 << position);
}

54) In code appearing in the questions above, explain what happens if the start and position parameters contain a
value greater than or equal to the number of bits in an unsigned integer.

55) Provide an example of HLA variable declarations for the following data types:

a) Eight-bit byte

b) 16-bit word

c) 32-bit dword

d) Boolean

e) 32-bit floating point

f) 64-bit floating point

g) 80-bit floating point
Page 110 © 1999, By Randall Hyde Beta Draft - Do not distribute

Questions, Projects, and Laboratory Exercises
h) Character

56) The long packed date format offers two advantages over the short date format. What are these advantages?

57) Convert the following real values to 32-bit single precision floating point format. Provide your answers in
hexadecimal, explain your answers.

a) 1.0 b) 2.0 c) 1.5 d) 10.0

e) 0.5 f) 0.25 g) 0.1 h) -1.0

i) 1.75 j) 128 k) 1e-2 l) 1.024e+3

58) Which of the values in question 41 do not have exact representations?

59) Show how to declare a character variable that is initialized with the character “*”.

60) Show how to declare a character variable that is initialized with the control-A character (See “The ASCII
Character Set” on page 92 for the ASCII code for control-A).

61) How many characters are present in the standard ASCII character set?

62) What is the basic structure of an HLA program?

63) Which HLA looping control structure(s) test(s) for loop termination at the beginning of the loop?

64) Which HLA looping control structure(s) test(s) for loop termination at the end of the loop?

65) Which HLA looping construct lets you create an infinite loop?

66) What set of flags are known as the “condition codes?”

67) What HLA statement would you use to trap exceptions?

68) Explain how the IN operator works in a boolean expression.

69) What is the stdio.bs constant?

70) How do you redirect the standard output of your programs so that the data is written to a text file?
Beta Draft - Do not distribute © 1999, By Randall Hyde Page 111

Chapter Five Volume One
5.2 Programming Projects for Chapter Two

1) Write a program to produce an “addition table.” This table should input two small int8 values from the user.
It should verify that the input is correct (i.e., handle the ex.ConversionError and ex.ValueOutOfRange
exceptions) and is positive. The second value must be greater than the first input value. The program will dis-
play a row of values between the lower and upper input values. It will also print a column of values between
the two values specified. Finally, it will print a matrix of sums. The following is the expected output for the
user inputs 15 & 18

add 15 16 17 18
15 30 31 32 33
16 31 32 33 34
17 32 33 34 35
18 33 34 35 36

2) Modify program (1), above, to draw lines between the columns and rows. Use the hyphen (‘-’), vertical bar
(‘|’), and plus sign (‘+’) characters to draw the lines. E.g.,

add | 15 | 16 | 17 | 18 |
-----+----+----+----+----+
15 | 30 | 31 | 32 | 33 |
-----+----+----+----+----+
16 | 31 | 32 | 33 | 34 |
-----+----+----+----+----+
17 | 32 | 33 | 34 | 35 |
-----+----+----+----+----+
18 | 33 | 34 | 35 | 36 |
-----+----+----+----+----+

For extra credit, use the line drawing character graphics symbols listed in Appendix B to draw the lines.
Note: to print a character constant as an ASCII code, use “#nnn” where “nnn” represents the ASCII code of
the character you wish to print. For example, “stdout.put(#179);” prints the line drawing vertical bar char-
acter.

3) Write a program that generates a “Powers of Four” table. Note that you can create the powers of four by
loading a register with one and then successively add that register to itself twice for each power of two.

4) Write a program that reads a list of positive numbers from a user until that user enters a negative or zero
value. Display the sum of those positive integers.

5) Write a program that computes (n)(n-1)/2. It should read the value “n” from the user. Hint: you can com-
pute this formula by adding up all the numbers between one and n.
Page 112 © 1999, By Randall Hyde Beta Draft - Do not distribute

Questions, Projects, and Laboratory Exercises
5.3 Programming Projects for Chapter Three

Write each of the following programs in HLA. Be sure to fully comment your source code. See Appen-
dix C for style guidelines and rules when writing HLA programs (and follow these rules to the letter!).
Include sample output and a short descriptive write up with your program submission(s).

1) Write a program that reads a line of characters from the user and displays that entire line after converting any
upper case characters to lower case. All non-alphabetic and existing lower case characters should pass
through unchanged; you should convert all upper case characters to lower case before printing them.

2) Write a program that reads a line of characters from the user and displays that entire line after swapping
upper case characters with lower case; that is, convert the incoming lower case characters to upper case and
convert the incoming upper case characters to lower case. All non-alphabetic characters should pass through
unchanged.

3) Write a program that reads three values from the user: a month, a day, and a year. Pack the date into the long
date format appearing in this chapter and display the result in hexadecimal. If the date is between 2000 and
2099, also pack the date into the short packed date format and display that 16-bit value in hexadecimal form.
If the date is not in the range 2000..2099, then display a short message suggesting that the translation is not
possible.

4) Write a date validation program that reads a month, day, and year from the user, verifies that the date is cor-
rect (ignore leap years for the time being), and then packs the date into the long date format appearing in this
chapter.

5) Write a “CntBits” program that counts the number of one bits in a 16-bit integer value input from the user.
Do not use any built-in functions in HLA’s library to count these bits for you. Use the shift or rotate instruc-
tions to extract each bit in the value.

6) Write a “TestBit” program. This program requires two integer inputs. The first value is a 32-bit integer to
test; the second value is an unsigned integer in the range 0..31 describing which bit to test. The program
should display true if the corresponding bit (in the test value) contains a one, the program should display
false if that bit position contains a zero. The program should always display false if the second value holds a
value outside the range 0..31.

7) Write a program that reads an eight-bit signed integer and a 32-bit signed integer from the user that com-
putes and displays the sum and difference of these two numbers.

8) Write a program that reads an eight-bit unsigned integer and a 16-bit unsigned integer from the user that
computes and displays the sum and the absolute value of the difference of these two numbers.

9) Write a program that reads a 32-bit unsigned integer from the user and displays this value in binary. Use the
SHL instruction to perform the integer to binary conversion.

10) Write a program that uses stdin.getc to read a sequence of binary digits from the user (that is, a sequence of
‘1’ and ‘0’ characters). Convert this string to an integer using the AND, SHL, and OR instructions. Display
the integer result in hexadecimal and decimal.

11) Using the LAFH instruction, write a program that will display the current values of the carry, sign, and zero
flags as boolean values. Read two integer values from the user, add them together, and them immediately
capture the flags’ values using the LAHF instruction and display the result of these three flags as boolean
values. Hint: use the SHL or SHR instructions to extract the specific flag bits.
Beta Draft - Do not distribute © 1999, By Randall Hyde Page 113

Chapter Five Volume One
5.4 Programming Projects for Chapter Four

1) Write an HLA program that reads a single precision floating point number from the user and prints the inter-
nal representation of that value using hexadecimal notation.

2) Write a program that reads a single precision floating point value from the user, takes the absolute value of
that number, and then displays the result. Hint: this program does not use any arithmetic instructions or
comparisons. Take a look at the binary representation for floating point numbers in order to solve this prob-
lem.

3) Write a program that generates an ASCII character set chart using the following output format:

 | 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
--+--
20| ! “ # ...
30| 0 1 2 3 ...
40| @ A B C ...
50| P Q R S ...
60| ‘ a b c ...
70| p q r s ...

Note that the columns in the table represent the L.O. four bits of the ASCII code, the rows in the table repre-
sent the H.O. four bits of the ASCII code. Note: for extra consideration, use the line-drawing graphic char-
acters (see Appendix B) to draw the lines in the table.

4) Using only five FOR loops, four calls to stdout.putcsize, and two calls to stdout.newln, write a program that
draws a checkerboard pattern. Your checkerboard should look like the following:

******** ******** ******** ********
******** ******** ******** ********
******** ******** ******** ********
******** ******** ******** ********
 ******** ******** ******** ********
 ******** ******** ******** ********
 ******** ******** ******** ********
 ******** ******** ******** ********
******** ******** ******** ********
******** ******** ******** ********
******** ******** ******** ********
******** ******** ******** ********
 ******** ******** ******** ********
 ******** ******** ******** ********
 ******** ******** ******** ********
 ******** ******** ******** ********
******** ******** ******** ********
******** ******** ******** ********
******** ******** ******** ********
******** ******** ******** ********
 ******** ******** ******** ********
 ******** ******** ******** ********
 ******** ******** ******** ********
 ******** ******** ******** ********
******** ******** ******** ********
******** ******** ******** ********
******** ******** ******** ********
******** ******** ******** ********
 ******** ******** ******** ********
 ******** ******** ******** ********
 ******** ******** ******** ********
 ******** ******** ******** ********
Page 114 © 1999, By Randall Hyde Beta Draft - Do not distribute

Questions, Projects, and Laboratory Exercises
5.5 Laboratory Exercises for Chapter Two

Before you can write, compile, and run a single HLA program, you will need to install the HLA lan-
guage system on your computer. If you are using HLA at school or some other institution, the system admin-
istrator has probably set up HLA for you. If you are working at home or on some computer on which HLA is
not installed, you will need to obtain the HLA distribution package and set it up on your computer. The first
section of this set of laboratory exercises deals with obtaining and installing HLA.

Once HLA is installed, the next step is to take stock of what is present in the HLA system. The second
part of this laboratory deals with the files that are present in the HLA distribution.

Finally, and probably most important, this set of laboratory exercises discusses how to write, compile,
and run some simple HLA programs.

5.5.1 A Short Note on Laboratory Exercises and Lab Reports

Whenever you work on laboratory exercises in this textbook you should always prepare a lab report
associated with each exercise. Your instructor may have some specific guidelines concerning the content of
the lab report (if your instructor requires that you submit the report). Be sure to check with your instructor
concerning the lab report requirements.

At a bare minimum, a lab report should contain the following:

• A title page with the lab title (chapter #), your name and other identification, the current date,
and the due date. If you have a course-related computer account, you should also include your
login name.

• If you modify or create a program in a lab exercise, the source code for that program should
appear in the laboratory report (do not simply reprint source code appearing in this text in order
to pad your lab report).

• Output from all programs should also appear in the lab report.
• For each exercise, you should provide a write-up describing the purpose of the exercise, what

you learned from the exercise, and any comments about improvements or other work you’ve
done with the exercise.

• If you make any mistakes that require correction, you should include the source code for the
incorrect program with your lab report. Hand write on the listing where the error occurs and
describe (in handwriting, on the listing) what you did to correct the problem. Note: no one is
perfect. If you turn in a lab report that has no listings with errors in it, this is a clear indication
that you didn’t bother to perform this part of the exercise.

• Appropriate diagrams.

The lab report should be prepared with a word processing program. Hand-written reports are unaccept-
able (although hand-drawn diagrams are acceptable if a suitable drawing package isn’t available). The report
should be proofread and of finished quality before submission. Only the listings with errors (and hand writ-
ten annotations) should be in a less than finished quality. See the “HLA Programming Style Guidelines”
appendix for important information concerning programming style. Adhere to these guidelines in the HLA
programs you submit.

5.5.2 Installing the HLA Distribution Package

The latest version of HLA is available from the Webster web server at

http://webster.cs.ucr.edu

Go to this web site and following the HLA links to the “HLA Download” page. From here you should
select the latest version of HLA for download to your computer. The HLA distribution is provided in a “Zip
Beta Draft - Do not distribute © 1999, By Randall Hyde Page 115

Chapter Five Volume One
File” compressed format. You will need a decompressor program like PKUNZIP or WinZip in order to
extract the HLA files from this zipped archive file. The use of these decompression products is beyond the
scope of this manual, please consult the software vendor’s documentation or their web page for information
concerning the use of these products.

This text assumes that you have unzipped the HLA distribution into the root directory of your C: drive.
You can certainly install HLA anywhere you want, but you will have to adjust the following descriptions if
you install HLA somewhere else.

HLA is a command window/console application. In order to run the HLA compiler you must run the
command window program (this is “command.com” on Windows 95 and 98, “cmd.exe” on Windows NT
and Windows 2000). Most Windows distributions let you run the command prompt windows from the Start
menu or from a submenu hanging off the start menu. Otherwise, you can find the executable in the “C:\Win-
dows” directory or in the “C:\WinNT\System32” directory1. This text assumes that you are familiar with the
Windows command window and you know how to use some basic command window commands (e.g., dir,
del, rename, etc.). If you have never before used the Windows command line interpreter, you should consult
an appropriate text to learn a few basic commands.

Before you can actually run the HLA compiler, you must set the system execution path and set up vari-
ous environment variables. Some versions of Windows (e.g., NT) let you permanently set up these values.
However, an easy and universal way to set up the path and environment variables is to use a batch file. A
batch file is a sequence of command window commands that you store into a file (with a “.BAT” extension)
to quickly execute by typing the filename (sans extension). This is the method we will use to initialize the
system.

The following text provides a suitable “ihla.bat” (initialize HLA) file that sets up the important vari-
ables, assuming you’ve installed HLA on your “C:” drive in the “C:\HLA” subdirectory:

path=c:\hla;%path%
set lib=c:\hla\hlalib;%lib%
set include=c:\hla\include;%include%
set hlainc=c:\hla\include
set hlalib=c:\hla\hlalib\hlalib.lib

Enter these lines of text into a suitable text editor (not a word processor) and save them as “ihla.bat” in the
“c:\hla” subdirectory. For your convenience, this batch file also appears in the “AoA_Software” directory of
the HLA distribution.

The first line in this batch file tells the system to execute the HLA.EXE and HLAPARSE.EXE files
directly from the HLA subdirectory without your having to specify the full pathname. That is, you can type
“hla” rather than “c:\hla\hla” in order to run the HLA compiler. Obviously, this saves a lot of typing and is
quite worthwhile2. The second and third lines of this batch file insert the HLA include directory and HLA
Standard Library directory into the search list used by compilers on the system. HLA doesn’t actually use
these variables, but other tools might, hence their inclusion in the batch file. The last two entries in the batch
file set up the HLA-specific environment variables that provide the paths to the HLA include file directory
and the HLA standard library file (hlalib.lib). The HLA compiler expects to find these variables in the sys-
tem environment. Compilation will probably fail if you haven’t set up these environment variables.

In addition to the HLA distribution files, you will also need some additional Microsoft tools in order to
use the HLA system. Specifically, you will need a copy of Microsoft’s Macro Assembler (MASM) and a
copy of the Microsoft Linker in order to use HLA. Fortunately, you may download these programs for free
from the internet. Instructions on how to do so are available on the net. The Webster web site (see the “Ran-
dall Hyde’s Assembly Page” link) maintains a link to a site that explains how to download MASM and LINK
from Microsoft’s web page. You will need to obtain the ml.exe, ml.err, link.exe, and the MspdbX0.dll (x=5,
6, or some other integer) files. Place these files in the HLA directory along with the HLA.EXE and HLA-
PARSE.EXE files3. In addition to these files, you will need a copy of Microsoft’s “kernel32.lib” library

1. Assuming you’ve installed Windows on your “C:” drive. Adjust the drive letter appropriately if you’ve installed Windows
on a different drive.
2. Alternately, you can move the HLA.EXE and HLAPARSE.EXE files to a subdirectory already in the execution path.
Page 116 © 1999, By Randall Hyde Beta Draft - Do not distribute

Questions, Projects, and Laboratory Exercises
package. This comes with Visual C++ and other Microsoft tools and compilers. If this file is not in the cur-
rent path specified by the “lib” environment variable, put a copy in the “c:\hla\hlalib” subdirectory.

Getting HLA up and running is a complex process because there are so many different files that have to
all be located in the right spot. If you are having trouble getting HLA running on your system, be sure that:

• HLA.EXE and HLAPARSE.EXE are in the “c:\hla” subdirectory.
• ml.exe, ml.err, and link.exe are in the “c:\hla” subdirectory.
• mspdbX0.dll (x=5, 6, or greater) is in the “c:\hla” subdirectory (win95 and win98 users).
• msvcrt.dll is in the c:\hla” subdirectory (Win NT and Win 2000 users).
• kernel32.lib is in the path specified by the “set lib=...” statement (e.g., the “c:\hla\hlalib” subdi-

rectory).

To verify the proper operation of HLA, open up a command window (i.e., from the START button in Win-
dows), type “c:\hla\ihla” to run the “ihla.bat” file to initialize the path and important environment variables.
Then type “hla -?” at the command line. HLA should display the current version number along with a list of
legal command line parameters. If you get this display, the system can find the HLA compiler, so go on to
the next step. If you do not get this message, then type “SET” at the command line prompt and verify that
the path is correct and that the lib, include, hlalib, and hlainc environment variables are set correctly. If not,
rerun the ihla.bat file and try again4.

Once you’ve verified the proper operation of the HLA compiler, the next step is to verify the proper
operation of the MASM assembler. You can do this by typing “ML -?” at the Windows command line
prompt. MASM should display its current version number and all the command line parameters it supports.
You will not directly run MASM, so you can ignore all this information. The important issue is whether the
information appears. If it does not, an HLA compile will fail. If the ML command does not bring up this
information, verify that ml.exe and ml.err are in an execution path (e.g., in the “c:\hla” subdirectory).

The next step is to verify that the Microsoft linker is operational. You can do this by typing “link -?” at
the Windows command line prompt. The program should display a message like “Microsoft (R) Incremen-
tal Linker Version 6.00.xxxx”. If you do not get a linker message at all, verify that the link.exe program is
installed in a subdirectory in the execution path (e.g., “c:\hla”). Also make sure that the mspdbX0.dll (X=5
or greater) and msvcrt.dll files appear in this same directory. Warning: depending on where you got your
copy of MASM, it may have come with a 16-bit linker. 16-bit linkers are not compatible with HLA. You
must use the newer 32-bit linkers that come with Visual C++ and other Microsoft languages.

At this point, you should have successfully installed the HLA system and it should be ready to use. After
a description of the HLA distribution in the next section, you’ll get an opportunity to test out your installa-
tion.

5.5.3 What’s Included in the HLA Distribution Package

Although HLA is relatively flexible about where you put it on your system, this text assumes you’ve
installed HLA on your C: drive under a Win32 operating system (e.g., Windows 95, 98, NT, 2000, and later
versions that are 32-bit compatible). This text also assumes the standard directory placement for the HLA
files, which has the following layout

• HLA directory
• Doc directory
• Examples directory
• AoA_Software directory
• Volume1
• Ch01 directory
• Ch02 directory

3. Actually, you may install these files in any directory that is in the execution path. So if you’ve purchased a commercial ver-
sion of MASM, or have installed the linker via Visual C++, there is no need to move or copy these files to the HLA directory.
4. Be sure the ihla.bat file contains appropriate drive letters in front of the pathnames if you are having problems.
Beta Draft - Do not distribute © 1999, By Randall Hyde Page 117

Chapter Five Volume One
• etc.
• Volume2
• Ch01 directory
• Ch02 directory
• etc.
• etc.
• hlalib directory
• include directory
• Tests directory

The main HLA directory contains the executable code for the compiler. This consists of two files,
HLA.EXE and HLAPARSE.EXE. These two programs must be in the current execution path in order to run
the compiler (the “path” command in the ihla.bat file sets the execution path). It wouldn’t hurt to put the
ml.exe, ml.err, link.exe, mspdbX0.dll (x=5, 6, or greater), and msvcrt.dll files in this directory as well.

The Doc directory contains reference material for HLA in PDF and HTML formats. If you have a copy
of Adobe Acrobat Reader, you will probably want to read the PDF versions since they are much nicer than
the HTML versions. These documents contain the most up-to-date information about the HLA language;
you should consult them if you have a question about the HLA language or the HLA Standard Library. Gen-
erally, material in this documentation supersedes information appearing in this text since the HLA document
is electronic and is probably more up to date.

The Examples directory contains a large set of HLA programs that demonstrate various features in the
HLA language. If you have a question about an HLA feature, you can probably find an example program
that demonstrates that feature in the Examples directory. Such examples provide invaluable insight that is
often superior to a written description of the feature.

The AoA_Software directory contains the code specific to this textbook. This directory contains all the
source code to (complete) programs appearing in this text. It also contains the programs appearing in the
Laboratory Exercises section of each chapter. Therefore, this directory is very important to you. Within this
subdirectory, the information is further divided up by chapter. The material for Chapter One appears in the
AoA_Software\Volume1\Ch01 subdirectory, the material for Chapter Two appears in the
AoA_Software\Volume1\Ch02 subdirectory, etc..

The hlalib directory contains the source and object code for the HLA Standard Library. As you become
more competent with HLA, you may want to take a look at how HLA implements various library functions.
In the meantime, this directory contains the hlalib.lib file which you must link with your own programs that
make calls to the standard library. Linking instructions appear a little later in this chapter.

The include directory contains the HLA Standard Library include files. These special files (that end with
a “.hhf” suffix, for HLA Header File) are needed during assembly to provide prototype and other informa-
tion to your program. The example programs in this chapter all include the HLA header file “stdlib.hhf” that,
in turn, includes all the other HLA header files in the standard library.

The Tests directory contains various test files that test the correct operation of the HLA system. HLA
includes these files as part of the distribution package because they provide additional examples of HLA
coding.

5.5.4 Using the HLA Compiler

If you’ve made it through the previous two sections, it’s now time to test out your installation and verify
that it is correct. In this section you’ll also learn how to run the compiler and the executables it produces.

To begin with, open a command prompt window. This is usually accomplished by selecting the “com-
mand prompt” program from the Windows Start menu (or one of its submenus). You can also use the “run”
command (from the Start button) and type “command” for Windows 95 & 98 or “cmd” for Windows NT &
Page 118 © 1999, By Randall Hyde Beta Draft - Do not distribute

Questions, Projects, and Laboratory Exercises
2000. Once you are faced with the command prompt window, type the following (boldfaced) commands to
initialize the HLA system:5

c:> cd c:\hla
c:> ihla

If your command prompt opens up a drive other than C:, you may need to switch to the “C:” drive (or what-
ever drive contains the HLA subdirectory) before issuing these commands. You can switch the default drive
by simply typing the drive letter followed by a colon. For example, to switch to the C: drive, you would use
the following command:

x:> c:

After running the “ihla” batch file to initialize the system, you can test for the presence of the HLA com-
piler by entering the following command:

c:\hla> hla -?

This should display some internal information about HLA along with a description of the syntax for the
HLA command. If you get an error message complaining about a missing command, you’ve probably not
installed HLA properly or the path hasn’t been properly set. If you believe you’ve installed HLA properly,
try running the ihla.bat file again, and check to be sure that the batch file contains the correct data.

Warning: every time you start a new command prompt window, you will need to re-run the ihla.bat file.
Generally, you should only have to open a command prompt window once per programming session. How-
ever, if you close the window for some reason, keep in mind that you must rerun ihla.bat before you can run
HLA.

5.5.5 Compiling Your First Program

Once HLA is operational, the next step is to compile an actual working program. The HLA distribution
contains lots of example HLA programs, including the HLA programs appearing in this text. Since these
examples are already written, tested, and ready to compile and run, it makes sense to work with one of these
example files when compiling your first program.

A good first program is the “Hello World” program appearing earlier in this volume (repeated below):

program helloWorld;
#include(“stdlib.hhf”);

begin helloWorld;

stdout.put(“Hello, World of Assembly Language”, nl);

end helloWorld;

The source code for this program appears in the “C:\hla\AoA_Software\Volume1\Ch02\Hel-
loWorld.hla” file. Create a new subdirectory in your root directory and name this new directory “lab1”. From
the command window prompt, you can create the new subdirectory using the following two commands:

c:> cd \
c:> mkdir lab1

5. This text typically displays the entire command line text when showing the execution of a command window command.
The non-boldfaced text is printed by the command line processor, the boldfaced text is user input. Note that this text assumes
that you are working on the “C:” disk drive. If you’re working on a different drive (e.g., a network drive containing your per-
sonal account), you will see a slightly different prompt and you will need to adjust the drive letters in the commands pre-
sented in this text.
Beta Draft - Do not distribute © 1999, By Randall Hyde Page 119

Chapter Five Volume One
The first command above switches you to the root directory (assuming you’re not there already). The second
command (mkdir = “make directory”) creates the lab1 directory6.

Copy the “Hello World” program (HelloWorld.hla) to this lab one directory using the following com-
mand window statement:

c:> copy c:\hla\AoA_Software\Volume1\CH02\HelloWorld.hla c:\lab1

From the command prompt window, switch to this new directory using the command:

c:> cd \lab1

To compile this program, type the following at the command prompt:

c:\lab1> hla HelloWorld

After a few moments, the Windows command prompt (“C:>”) should reappear. At this point, your pro-
gram has been successfully compiled. To run the executable (HelloWorld.exe) that HLA has produced, you
would use the following command:

c:\lab1> HelloWorld

The program should run, display “Hello World”, and then terminate. At that time the command window
should be waiting for another command.

If you have not successfully completed the previous steps, return to the previous section and repeat the
steps to verify that HLA is operational on your system. Remember, each time you start a new command
window, you must execute the “ihla.bat” file (or otherwise set up the environment) in order to make HLA
accessible in that command window.

In your lab report, describe the output of the HLA compiler. For additional compilation information, use
the following command to compile this program:

c:> hla -v HelloWorld

The “-v” option stands for verbose compile. This presents more information during the compilation pro-
cess. Describe the output of this verbose compilation in your lab report. If possible, capture the output and
include the captured output with your lab report. To capture the output to a file, use a command like the fol-
lowing:

c:> hla -t -v HelloWorld >capture.txt

This command sends most of the output normally destined to the screen to the ”capture.txt” output file.
You can then load this text file into an editor for further processing. Of course, you may choose a different
filename than “capture.txt” if you so desire.

5.5.6 Compiling Other Programs Appearing in this Chapter

The “AoA_Software\Volume1\Ch02” subdirectory contains all the other sample programs appearing in
this chapter. They are

• HelloWorld.hla

6. Some school’s labs may not allow you to place information on the C: drive. If you want or need to place your personal
working directory on a different drive, just substitute the appropriate drive letter for “C:” in these examples.
Page 120 © 1999, By Randall Hyde Beta Draft - Do not distribute

Questions, Projects, and Laboratory Exercises
• CharInput.hla
• CheckerBoard.hla
• DemoMOVaddSUB.hla
• DemoVars.hla
• fib.hla
• intInput.hla
• NumsInColums.hla
• NumsInColums2.hla
• PowersOfTwo.hla

Copy each of these files to your lab1 subdirectory. Compile and run each of these programs. Describe
the output of each in your lab report.

5.5.7 Creating and Modifying HLA Programs

In order to create or modify HLA programs you will need to use a text editor to manipulate HLA source
code. Windows provides two low-end text editors: notepad.exe and edit.exe. Notepad.exe is a win-
dows-based application while edit.exe is a console (command prompt) application. Neither editor is particu-
larly good for editing program source code; if you have an option to use a different text editor (e.g., the
Microsoft Visual Studio system that comes with VC++ and other Microsoft languages), you should certainly
do so. This text will assume the use of notepad or edit since these two programs come with every copy of
windows and will be present on all systems.

Warning: do not use Microsoft Word, wordpad, or any other word processing programs to create or
modify HLA programs. Word processing programs insert extra characters into the document that are incom-
patible with HLA. If you accidentally save a source file from one of these word processors, you will not be
able to compile the program7.

Edit.exe is probably a better choice for program development than is notepad.exe. One reason edit.exe is
better is because it displays line numbers while notepad.exe does not. When HLA reports an error in your
program, it provides the line number of the offending statement; if you are using notepad.exe, it will be very
difficult to locate the source of your error since notepad does not report the line numbers. Another problem
with notepad is that it insists on tacking a “.txt” extension onto the end of your filenames, even if they
already have an “.hla” extension. This is rather annoying8. One advantage to using notepad is that you can
run it by simply double-clicking on a (notepad-registered) “.hla” icon.

To run the edit.exe program to edit an HLA program, you would specify a command line like the fol-
lowing:

c:> edit HelloWorld.hla

This example brings up the “Hello World” program into the editor, ready to be modified. This text
assumes that you are already familiar with text editing principles. Edit.exe is a very simple editor; if you’ve
used any text editor in the past, you should be comfortable using edit.exe (other than the fact that it is quite
limited).

For the time being, modify the statement:

stdout.put(“Hello, World of Assembly Language”, nl);

Change the text ‘World of Assembly Language’ to your name, e.g.,

stdout.put(“Hello Randall Hyde”, nl);

7. Note that many word processing programs provide a “save as text” option. If you accidentally destroy a source file by sav-
ing it from a word processor, simply reenter the word processor and save the file as text.
8. You can eliminate this problem by registering “.HLA” as a notepad document format by selecting “view>options>File
Types” from the view menu in any open directory window.
Beta Draft - Do not distribute © 1999, By Randall Hyde Page 121

Chapter Five Volume One
After you’ve done this, save the file to disk and recompile and run the program. Assuming you haven’t
introduced any typographical errors into the program, it should compile and run without incident. After mak-
ing the modifications to the program, capture the output and include the captured output in your lab report.
You can capture the output from this program by using the I/O redirection operator as follows:

c:> HelloWorld >out.txt

This sends the output (“Hello Randall Hyde”) to the “out.txt” text file rather than to the display. Include
the sample output and the modified program in your lab report. Note: don’t forget to include any erroneous
source code in your lab report to demonstrate the changes you’ve made during development of the code.

5.5.8 Writing a New Program

To create a brand-new program is relatively easy. Simply specify the name of the new file as a parameter
to the edit command line:

c:> edit newfile.hla

This will bring up the editor with an empty file. Enter the following program into the editor (note: this
program is not available in the AoA_Software directory, you must enter this file yourself):

program onePlusOne;
#include(“stdlib.hhf”);

static
One: int32;

begin onePlusOne;

mov(1, One);
mov(One, eax);
add(One, eax);
mov(eax, One);
stdout.put(“One + One = “, One, nl);

end onePlusOne;

Remember, HLA is very particular about the way you spell names. So be sure that the alphabetic case is cor-
rect on all identifiers in this program. Before attempting to compile your program, proof read it to check for
any typographical errors.

After entering and saving the program above, exit the editor and compile this program from the com-
mand prompt. If there are any errors in the program, reenter the editor, correct the errors, and then compile
the program again. Repeat until the program compiles correctly.

Note: If you encounter any errors during compilation, make a printout of the program (with errors) and
hand write on the printout where the errors occur and what was necessary to correct the error(s). Include this
printout with your lab report.

After the program compiles successfully, run it and verify that it runs correctly. Include a printout of the
program and the captured output in your lab report.

5.5.9 Correcting Errors in an HLA Program

The following program (HasAnError.hla in the AoA_Examples directory) contains a minor syntax error
(a missing semicolon). Compile this program:
Page 122 © 1999, By Randall Hyde Beta Draft - Do not distribute

Questions, Projects, and Laboratory Exercises
// This program has a syntactical error to
// demonstrate compilation errors in an HLA
// program.

program hasAnError;
#include("stdlib.hhf");
begin hasAnError;

 stdout.puts("This program doesn't compile!") // missing ";"

end hasAnError;

Program 1.6 Sample Program With a Syntax Error

When you compile this program, you will notice that it doesn’t report the error on line nine (the line
actually containing the error). Instead, it reports the error on line 11 (the “end” statement) since this is the
first point at which the compiler can determine that an error has occurred.

Capture the error output of this program into a text file using the following command:

c:> hla -t HasAnError >err1.txt

Include this output in your laboratory report.

Correct the syntax error in this program and compile and run the program. Include the source code of
the corrected program as well as its output in your lab report.

5.5.10 Write Your Own Sample Program

Conclude this laboratory exercise by writing a simple little program of your own. Include the source
code and sample output in your lab report. If you have any syntax errors in your code, be sure to include a
printout of the incorrect code with hand-written annotations describing how you fixed the problem(s) in your
program.
Beta Draft - Do not distribute © 1999, By Randall Hyde Page 123

Chapter Five Volume One
5.6 Laboratory Exercises for Chapter Three and Chapter Four

Accompanying this text is a significant amount of software. The software can be found in the
AoA_Software\Volume1 directory. Inside this directory is a set of directories with names like Ch03 and
Ch04, with the names obviously corresponding to chapters in this textbook. All the source code to the exam-
ple programs in this chapter can be found in the Ch04 subdirectory. The Ch04 subdirectory also contains
some executable programs for this chapter’s laboratory exercises as well as the (Inprise Delphi) source code
for the lab exercises. Please see this directory for more details.

5.6.1 Data Conversion Exercises

In this exercise you will be using the “convert.exe” program found in the Ch04 subdirectory. This pro-
gram displays and converts 16-bit integers using signed decimal, unsigned decimal, hexadecimal, and binary
notation.

When you run this program it opens a window with four edit boxes. (one for each data type). Changing
a value in one of the edit boxes immediately updates the values in the other boxes so they all display their
corresponding representations for the new value. If you make a mistake on data entry, the program beeps and
turns the edit box red until you correct the mistake. Note that you can use the mouse, cursor control keys,
and the editing keys (e.g., DEL and Backspace) to change individual values in the edit boxes.

For this exercise and your laboratory report, you should explore the relationship between various binary,
hexadecimal, unsigned decimal, and signed decimal values. For example, you should enter the unsigned dec-
imal values 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, and 32768 and comment on
the values that appear in the other text boxes.

The primary purpose of this exercise is to familiarize yourself with the decimal equivalents of some
common binary and hexadecimal values. In your lab report, for example, you should explain what is special
about the binary (and hexadecimal) equivalents of the decimal numbers above.

Another set of experiments to try is to choose various binary numbers that have exactly two bits set, e.g.,
11, 110, 1100, 1 1000, 11 0000, etc. Be sure to comment on the decimal and hexadecimal results these inputs
produce.

Try entering several binary numbers where the L.O. eight bits are all zero. Comment on the results in
your lab report. Try the same experiment with hexadecimal numbers using zeros for the L.O. digit or the two
L.O. digits.

You should also experiment with negative numbers in the signed decimal text entry box; try using val-
ues like -1, -2, -3, -256, -1024, etc. Explain the results you obtain using your knowledge of the two’s com-
plement numbering system.

Try entering even and odd numbers in unsigned decimal. Discover and describe the difference between
even and odd numbers in their binary representation. Try entering multiples of other values (e.g., for three: 3,
6, 9, 12, 15, 18, 21, ...) and see if you can detect a pattern in the binary results.

Verify the hexadecimal <-> binary conversion this chapter describes. In particular, enter the same hexa-
decimal digit in each of the four positions of a 16-bit value and comment on the position of the correspond-
ing bits in the binary representation. Try entering several binary values like 1111, 11110, 111100, 1111000,
and 11110000. Explain the results you get and describe why you should always extend binary values so their
length is an even multiple of four before converting them.

In your lab report, list the experiments above plus several you devise yourself. Explain the results you
expect and include the actual results that the convert.exe program produces. Explain any insights you have
while using the convert.exe program.
Page 124 © 1999, By Randall Hyde Beta Draft - Do not distribute

Questions, Projects, and Laboratory Exercises
5.6.2 Logical Operations Exercises

The “logical.exe” program is a simple calculator that computes various logical functions. It allows you
to enter binary or hexadecimal values and then it computes the result of some logical operation on the inputs.
The calculator supports the dyadic logical AND, OR, and XOR. It also supports the monadic NOT, NEG
(two’s complement), SHL (shift left), SHR (shift right), ROL (rotate left), and ROR (rotate right).

When you run the logical.exe program it displays a set of buttons on the left hand side of the window.
These buttons let you select the calculation. For example, pressing the AND button instructs the calculator to
compute the logical AND operation between the two input values. If you select a monadic (unary) operation
like NOT, SHL, etc., then you may only enter a single value; for the dyadic operations, both sets of text entry
boxes will be active.

The logical.exe program lets you enter values in binary or hexadecimal. Note that this program automat-
ically converts any changes in the binary text entry window to hexadecimal and updates the value in the hex
entry edit box. Likewise, any changes in the hexadecimal text entry box are immediately reflected in the
binary text box. If you enter an illegal value in a text entry box, the logical.exe program will turn the box red
until you correct the problem.

For this laboratory exercise, you should explore each of the bitwise logical operations. Create several
experiments by carefully choosing some values, manually compute the result you expect, and then run the
experiment using the logical.exe program to verify your results. You should especially experiment with the
masking capabilities of the logical AND, OR, and XOR operations. Try logically ANDing, ORing, and
XORing different values with values like 000F, 00FF, 00F0, 0FFF, FF00, etc. Report the results and com-
ment on them in your laboratory report.

Some experiments you might want to try, in addition to those you devise yourself, include the following:

• Devise a mask to convert ASCII values ‘0’..’9’ to their binary integer counterparts using the
logical AND operation. Try entering the ASCII codes of each of these digits when using this
mask. Describe your results. What happens if you enter non-digit ASCII codes?

• Devise a mask to convert integer values in the range 0..9 to their corresponding ASCII codes
using the logical OR operation. Enter each of the binary values in the range 0..9 and describe
your results. What happens if you enter values outside the range 0..9? In particular, what hap-
pens if you enter values outside the range 0h..0fh?

• Devise a mask to determine whether a 16-bit integer value is positive or negative using the log-
ical AND operation. The result should be zero if the number is positive (or zero) and it should
be non-zero if the number is negative. Enter several positive and negative values to test your
mask. Explain how you could use the AND operation to test any single bit to determine if it is
zero or one.

• Devise a mask to use with the logical XOR operation that will produce the same result on the
second operand as applying the logical NOT operator to that second operand.

• Verify that the SHL and SHR operators correspond to an integer multiplication by two and an
integer division by two, respectively. What happens if you shift data out of the H.O. or L.O.
bits? What does this correspond to in terms of integer multiplication and division?

• Apply the ROL operation to a set of positive and negative numbers. Based on your observa-
tions in Section 5.6.2, what can you say about the result when you rotate left a negative number
or a positive number?

• Apply the NEG and NOT operators to a value. Discuss the similarity and the difference in their
results. Describe this difference based on your knowledge of the two’s complement numbering
system.

5.6.3 Sign and Zero Extension Exercises

The “signext.exe” program accepts eight-bit binary or hexadecimal values then sign and zero extends
them to 16 bits. Like the logical.exe program, this program lets you enter a value in either binary or hexadec-
imal and immediate zero and sign extends that value.
Beta Draft - Do not distribute © 1999, By Randall Hyde Page 125

Chapter Five Volume One
For your laboratory report, provide several eight-bit input values and describe the results you expect.
Run these values through the signext.exe program and verify the results. For each experiment you run, be
sure to list all the results in your lab report. Be sure to try values like $0, $7f, $80, and $ff.

While running these experiments, discover which hexadecimal digits appearing in the H.O. nibble pro-
duce negative 16-bit numbers and which produce positive 16-bit values. Document this set in your lab
report.

Enter sets of values like (1,10), (2,20), (3,30), ..., (7,70), (8,80), (9,90), (A,A0), ..., (F,F0). Explain the
results you get in your lab report. Why does “F” sign extend with zeros while “F0” sign extends with ones?

Explain in your lab report how one would sign or zero extend 16 bit values to 32 bit values. Explain why
zero extension or sign extension is useful.

5.6.4 Packed Data Exercises

The packdata.exe program uses the 16-bit Date data type appearing in Chapter Three (see “Bit Fields
and Packed Data” on page 70). It lets you input a date value in binary or decimal and it packs that date into a
single 16-bit value.

When you run this program, it will give you a window with six data entry boxes: three to enter the date
in decimal form (month, day, year) and three text entry boxes that let you enter the date in binary form. The
month value should be in the range 1..12, the day value should be in the range 1..31, and the year value
should be in the range 0..99. If you enter a value outside this range (or some other illegal value), then the
packdata.exe program will turn the data entry box red until you correct the problem.

Choose several dates for your experiments and convert these dates to the 16-bit packed binary form by
hand (if you have trouble with the decimal to binary conversion, use the conversion program from the first
set of exercises in this laboratory). Then run these dates through the packdata.exe program to verify your
answer. Be sure to include all program output in your lab report.

At a bare minimum, you should include the following dates in your experiments:

2/4/68, 1/1/80, 8/16/64, 7/20/60, 11/2/72, 12/25/99, Today’s Date, a birthday (not necessarily yours), the
due date on your lab report.

5.6.5 Running this Chapter’s Sample Programs

The Ch03 and Ch04 subdirectories also contain the source code to each of the sample programs appear-
ing in Chapters Three and Four. Compile and run each of these programs. Capture the output and include a
printout of the source code and the output of each program in your laboratory report. Comment on the
results produced by each program in your laboratory report.

5.6.6 Write Your Own Sample Program

To conclude your laboratory exercise, design and write a program on your own that demonstrates the
use of each of the data types presented in this chapter. Your sample program should also show how you can
interpret data values differently, depending on the instructions or HLA Standard Library routines you use to
operate on that data. Your sample program should also demonstrate conversions, logical operations, sign and
zero extension, and packing or unpacking a packed data type (in other words, your program should demon-
strate your understanding of the other components of this laboratory exercise). Include the source code,
sample output, and a description of your sample program in your lab report.
Page 126 © 1999, By Randall Hyde Beta Draft - Do not distribute

	Volume One:
	Data Representation
	Foreward Chapter One
	• Foreward to the HLA Version of “The Art of Assembly...”
	• Intended Audience
	• Teaching From This Text
	• Copyright Notice
	• How to Get a Hard Copy of This Text
	• Obtaining Program Source Listings and Other Materials in This Text
	• Where to Get Help
	• Other Materials You Will Need

	Hello, World of Assembly Language Chapter Two
	2.0 Chapter Overview
	2.1 The Anatomy of an HLA Program
	2.2 Some Basic HLA Data Declarations
	2.3 Boolean Values
	2.4 Character Values
	2.5 An Introduction to the Intel 80x86 CPU Family
	2.6 Some Basic Machine Instructions
	2.7 Some Basic HLA Control Structures
	2.7.1 Boolean Expressions in HLA Statements
	2.7.2 The HLA IF..THEN..ELSEIF..ELSE..ENDIF Statement
	2.7.3 The WHILE..ENDWHILE Statement
	2.7.4 The FOR..ENDFOR Statement
	2.7.5 The REPEAT..UNTIL Statement
	2.7.6 The BREAK and BREAKIF Statements
	2.7.7 The FOREVER..ENDFOR Statement
	2.7.8 The TRY..EXCEPTION..ENDTRY Statement

	2.8 Introduction to the HLA Standard Library
	2.8.1 Predefined Constants in the STDIO Module
	2.8.2 Standard In and Standard Out
	2.8.3 The stdout.newln Routine
	2.8.4 The stdout.putiX Routines
	2.8.5 The stdout.putiXsize Routines
	2.8.6 The stdout.put Routine
	2.8.7 The stdin.getc Routine.
	2.8.8 The stdin.getiX Routines
	2.8.9 The stdin.ReadLn and stdin.FlushInput Routines
	2.8.10 The stdin.get Macro

	2.9 Putting It All Together
	2.10 Sample Programs
	2.10.1 Powers of Two Table Generation
	2.10.2 Checkerboard Program
	2.10.3 Fibonocci Number Generation

	Data Representation Chapter Three
	3.1 Chapter Overview
	3.2 Numbering Systems
	3.2.1 A Review of the Decimal System
	3.2.2 The Binary Numbering System
	3.2.3 Binary Formats

	3.3 Data Organization
	3.3.1 Bits
	3.3.2 Nibbles
	3.3.3 Bytes
	3.3.4 Words
	3.3.5 Double Words

	3.4 The Hexadecimal Numbering System
	3.5 Arithmetic Operations on Binary and Hexadecimal Numbers
	3.6 A Note About Numbers vs. Representation
	3.7 Logical Operations on Bits
	3.8 Logical Operations on Binary Numbers and Bit Strings
	3.9 Signed and Unsigned Numbers
	3.10 Sign Extension, Zero Extension, Contraction, and Saturation
	3.11 Shifts and Rotates
	3.12 Bit Fields and Packed Data
	3.13 Putting It All Together

	More Data Representation Chapter Four
	4.1 Chapter Overview
	4.2 An Introduction to Floating Point Arithmetic
	4.2.1 IEEE Floating Point Formats
	4.2.2 HLA Support for Floating Point Values

	4.3 Binary Coded Decimal (BCD) Representation
	4.4 Characters
	4.4.1 The ASCII Character Encoding
	4.4.2 HLA Support for ASCII Characters
	4.4.3 The ASCII Character Set

	4.5 The UNICODE Character Set
	4.6 Other Data Representations
	4.6.1 Representing Colors on a Video Display
	4.6.2 Representing Audio Information
	4.6.3 Representing Musical Information
	4.6.4 Representing Video Information
	4.6.5 Where to Get More Information About Data Types

	4.7 Putting It All Together

	Chapter Five
	Questions, Projects, and Lab Exercises
	5.1 Questions
	5.2 Programming Projects for Chapter Two
	5.5 Laboratory Exercises for Chapter Two
	5.5.1 A Short Note on Laboratory Exercises and Lab Reports
	5.5.2 Installing the HLA Distribution Package
	5.5.3 What’s Included in the HLA Distribution Package
	5.5.4 Using the HLA Compiler
	5.5.5 Compiling Your First Program
	5.5.6 Compiling Other Programs Appearing in this Chapter
	5.5.7 Creating and Modifying HLA Programs
	5.5.8 Writing a New Program
	5.5.9 Correcting Errors in an HLA Program
	5.5.10 Write Your Own Sample Program

	5.6 Laboratory Exercises for Chapter Three and Chapter Four
	5.6.1 Data Conversion Exercises
	5.6.2 Logical Operations Exercises
	5.6.3 Sign and Zero Extension Exercises
	5.6.4 Packed Data Exercises
	5.6.5 Running this Chapter’s Sample Programs
	5.6.6 Write Your Own Sample Program

